

Current

What is Current?

Current is the flow of electrons through a circuit.

Why do Electrons Move?

- An electrochemical cell (battery) uses chemical reactions to move electrons. This creates a "potential difference" between the ends of the battery.
- Positive terminal is positively charged
- Negative terminal is negatively charged and has an excess of electrons

Why do Electrons Move?

- When a circuit connects the two ends of the cell, current flows through the wire.
- Electrons are repelled by the negative terminal and are attracted by the positive terminal.
- Electrons cannot move through air (insulator) but they can definitely move through a wire (conductor)!

- When scientists discovered electric current, they assumed that positive charges were moving.
- This is called conventional current
- defined as the direction positive charges move in a circuit
- from positive to negative
- we now know this isn't the way it actually works.

Calculating Current

Current is the amount of charge that passes a point in a circuit every second:

$$
I=\frac{Q}{t}
$$

I: is the symbol for current, measured in amperes (A)
\mathbf{Q} : is the symbol for charge, measured in coulombs (C)
t: is time, measured in seconds (s)

Example \#I

What is the current in a wire if 25 C of charge passes by a point in 5 seconds?

$$
I=\frac{Q}{t}=\frac{25 C}{5 s}=5 A
$$

Example \#2

If the current in a wire is measured to be 12 A , how much charge passes by a point in the circuit every minute?

$$
\begin{aligned}
Q & =I \times t \\
& =12 \mathrm{~A} \times 60 \mathrm{~s} \\
& =720 \mathrm{C}
\end{aligned}
$$

Example \#3

A current of 64 mA is equivalent to A.
$64 \mathrm{~mA} \times \frac{1 A}{1000 \mathrm{~mA}}=0.064 \mathrm{~A}$

Example \#4

A current of 0.0028 A is equivalent to mA .
$64 \mathrm{~mA} \times \frac{1 \mathrm{~A}}{1000 \mathrm{~mA}}=0.064 \mathrm{~A}$

- Current is measured by a device called an ammeter.
- Typical amounts of current:
- In a light bulb is IA
- In a TV is 4A
- In a car starter is 500 A

Series vs. Parallel

In a circuit, devices (such as light bulbs or batteries) can be placed in two different ways.

I.SERIES

- When devices are placed in series, the current goes through a single path through all devices.
- In this circuit, there is only one path and the current
 goes through the two light bulbs in the series.

2. PARALLEL

- When devices are placed in parallel, there are 2 or more paths that the current can take
- Current splits: some electrons go through one device, and some go through the other(s).

- Decide whether each circuit is Series, Parallel, or a Combination of the two.
A.

D.

E.

Calculating Current in SERIES

- Current (I)
- Measured in Amperes (A)
- When you place an Ammeter in SERIES the current stays the same
- Series:

Calculating Current in PARALLEL

- Current (I)
- Measured in Amperes (A)
- When you place an Ammeter in PARALLEL, you add the current to find a total.
- Parallel:

$$
I_{\text {Total }}=I_{1}+I_{2}+\ldots
$$

Example \#4

Find the total current for the following circuit.

$$
\begin{aligned}
I_{\text {Total }} & =I_{1}+I_{2} \\
& =10 \mathrm{~A}+12 \mathrm{~A} \\
& =22 \mathrm{~A}
\end{aligned}
$$

Example \#5

Find the total current for the following circuit.

$$
I_{\text {Total }}=I_{2}=I_{1}=12 A
$$

Example \#6

How long does it take 40 C of charge to pass by a point if the current in the circuit is
 0.76 A ?

$$
t=\frac{Q}{I}=\frac{40 C}{0.76 A}=52.6 s
$$

