Calculating Voltage in Series

Circle the best term in the parentheses to correctly complete each statement.

1. A series circuit has (more than one, only one) path for current to travel.

2. In a series circuit, the current at one location in the circuit is (*equal to, different from*) the current at another location in the circuit.

3. If two different resistors are connected in series, the voltage across one resistor will be (*equal to, different from*) the voltage across the second resistor.

4. By adding a resistor in series with an original resistor, the total resistance of the circuit (*increases*, *decreases*).

5. The sum of the voltages across each of the resistors in a series circuit is (*equal to, different from*) the voltage supplied by the battery.

Find the unknown voltage at V, and current at A, in each of the following circuits.

Calculating Voltage in Parallel

Circle the best term in the parentheses to correctly complete each statement.

1. A parallel circuit has (only one, more than one) path for current to travel.

2. Two different resistors are connected in parallel. The current through one of the resistors will be *(equal to, different from)* the current through the other resistor.

3. If two different resistors are connected in parallel, the voltage across one resistor will be (*equal to, different from*) the voltage across the second resistor.

4. By adding a resistor in parallel with an original resistor, the total resistance of the circuit (*increases*, *decreases*).

5. The total current entering the junction of a parallel circuit must be (*equal to, different from*) the sum of the currents through each branch of the parallel circuit.

Find the unknown voltage at V, and current at A, in each of the following circuits.

Block: