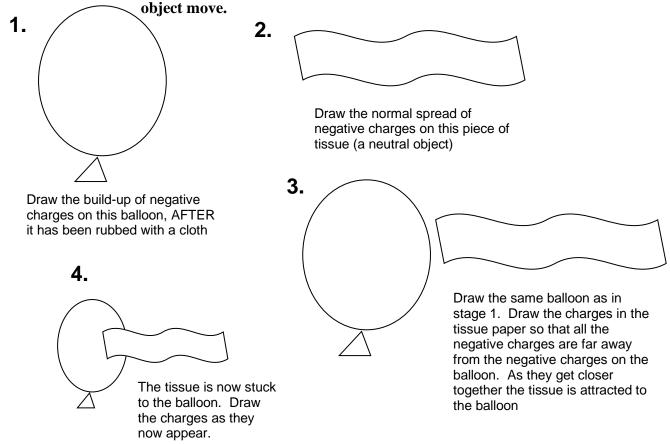

Conductors and Insulators

/24

Name:	
Directions: Add the charges to the before and after pictur	es to show what is happening.
POINT ONE: Static electricity needs an insulator. A bannot free to move on its surface. They are stuck in one place	
Balloon and cloth BEFORE being rubbed together	Balloon and cloth AFTER being rubbed together
The build-up of negative charges also called	in one place is called static electricity. It is
called "static" because it does not move around. The negative	tive charges do not move around because they are
on a balloon which is made of rubber. Because of this rubl	per is known as an (4)
POINT TWO: Conductors cannot have static electricit	y
Metal rod and cloth BEFORE being rubbed together	Metal rod and cloth AFTER being rubbed together
Metal is a, a substance which lets neg	gative charges (also known as)
move around freely. Because of this, negative charges do	not build up in one place, and
electricity cannot be created.(5)	


Mrs. Hinrichs Grade 9 Science

POINT THREE: When there is a difference in negative charges, charges will move. The negative charges will jump from the places where there are the *most* number to where there are the *least*. Complete the following diagrams by adding negative charges (electrons) to show the possible relationships:

Negative charges (or electrons) will always move from where there are the (greatest/fewest) number to where there are the (greatest/fewest) number. If there is a big enough difference and the two objects are close enough together, this jumping may cause a _______. (4)

POINT FOUR: Static electricity can induce a charge separation in neutral object which can make the

The movement of electrons in a neutral object giving a temporary charge, this is called ______. If the object with a temporary charge is light enough it can be ______ towards the object that caused the temporary charge.(6)

Mrs. Hinrichs Grade 9 Science

POINT FIVE: If an object has too many electr	cons for the number of protons, we say it is negatively
charged overall. Using the object to the right pl	ace the appropriate amount of protons and electrons to
indicate a negatively charged object. (1)	
If an object has too few electrons for the numb	per of protons, we say it is positively charged overall.
Using the object to the right place the appropriate	e number of protons and electrons to indicate a positively
charged object. (1)	
Give 3 examples of insulators and conductors (0.	$5 \times 6 = 3$)
Insulators	Conductors