Ohm's Law

\square The relationship between voltage, current and resistance is given by Ohm's Law:

$\mathbf{V}=\mathbf{I R}$

Voltage (V) = Current (I) $\quad x \quad$ Resistance (R) Volts (V) amps (A) ohms (Ω)
\square The greater the resistance, the lower the current.
\square The lower the resistance, the higher the current.

Ohm's Law

You can rearrange the formula to calculate resistance and current:
$\begin{array}{lll}\text { resistance }=\text { voltage } \div \text { current } & \text { or } & R=\frac{V}{I} \\ \text { current }=\text { voltage } \div \text { resistance } & \text { or } & I=\frac{V}{R}\end{array}$

Fill in the following table and calculate Resistance.

Voltage (V)	Current (A)	Resistance (Ω)
3.0	1.2	2.4Ω
4.5	1.7	2.65Ω
6.0	2.5	2.4Ω
9.0	3.6	2.5Ω
12.0	5.0	2.4Ω

Example \#1

A current of 2.5 mA flows through a resistor when connected to a 16 V power supply.
What is the value of this resistor?

$$
\begin{aligned}
R & =\frac{V}{I} \\
& =\frac{16 \mathrm{~V}}{0.0025 \mathrm{~A}} \\
& =6400 \Omega
\end{aligned}
$$

Example \#2

What is the current produced by a potential difference of 240 volts through a resistance of 0.2 ohms?

$$
I=\frac{V}{R}
$$

$=\frac{240 \mathrm{~V}}{0.2 \Omega}$
$=1200 A$

