Ohm's Law

The relationship between voltage, current and resistance is given by Ohm's Law:

$$V = IR$$

Voltage (V) = Current (I) x Resistance (R) Volts (V) amps (A) ohms (Ω)

- □ The greater the resistance, the lower the current.
- □ The lower the resistance, the higher the current.

Ohm's Law

You can rearrange the formula to calculate resistance and current:

$$resistance = voltage \div current \quad \text{or} \quad R = \frac{V}{I}$$
$$current = voltage \div resistance \quad \text{or} \quad I = \frac{V}{R}$$

Fill in the following table and calculate Resistance.

Voltage (V)	Current (A)	Resistance (Ω)
3.0	1.2	2.4 Ω
4.5	1.7	2.65 Ω
6.0	2.5	2.4 Ω
9.0	3.6	2.5 Ω
12.0	5.0	2.4 Ω

A current of 2.5 mA flows through a resistor when connected to a 16 V power supply. What is the value of this resistor?

$$R = \frac{V}{I}$$
$$= \frac{16 V}{0.0025 A}$$
$$= 6400 \Omega$$

What is the current produced by a potential difference of 240 volts through a resistance of 0.2 ohms?

$$I = \frac{V}{R}$$
$$= \frac{240 V}{0.2 \Omega}$$
$$= 1200$$