McGraw-Hill Ryerson

BC Science Connections

BC Science Connections 8

UNIT 2

The behaviour of matter can be explained by the kinetic molecular theory and atomic theory

TOPIC 2.2 What are some ways to describe matter?

Which one is real gold? Which is fake?

iron pyrite "Fool's gold"

<u>Link</u> to properties

https://www.sciencephoto.com/media/169995/view/iron-pyrites

https://able2know.org/topic/360097-1

BC Science Connections 8, Copyright $\ensuremath{\mathbb O}$ McGraw-Hill Education

Topic 2.2: What are some ways to describe matter?

- Matter has different properties:
 - -Physical properties
 - -Chemical properties

Concept 1: Matter can be described by its physical properties.

- Physical property:
 - Characteristic of matter that can be observed or measured without changing its chemical identity
 - -Can be quantitative or qualitative

Qualitative Physical Properties

- Qualitative physical properties:
 - -Can be described and compared using words
 - -Examples: colour, odour, texture, state

What are the qualitative physical properties of the items shown here?

Quantitative Physical Properties

- Quantitative physical properties:
 - -Can be measured and assigned a numerical value
 - Examples: boiling point, melting point, mass, volume, density

The boiling point is the temperature at which a liquid becomes a gas. The boiling point of water is 100°C.

Warm-up:

Why do kids wear pool floaties when they swim?

Mass and Volume

- All matter (including air!) has two things in common: mass and volume.
- Mass: quantity of matter in an object or sample
 - Units:
 - kilogram (kg)
 - gram (g)
 - milligram (mg)

A digital balance showing the mass of a grape.

Mass and Volume

- All matter (including air!) has two things in common: mass and volume.
- Volume: amount of space that a material takes up
 - Units:
 - Solid:
 - cubic metres (m³)
 - cubic centimetres (cm³)
 - Gas or liquid:
 - litres (L)
 - millilitres (mL)

Are you drinking hot chocolate wrong?

http://foodology.ca/how-to-properly-drink-a-hot-chocolate/

Density: A Physical Property Related to Mass and Volume

Density: quantity of mass in a certain volume of material

 Units: solid – grams per cubic centimetre (g/cm³);
 liquids and gases – grams per millilitre (g/mL)

Figure 2.6: The grape and foam have the same mass but different volumes.

Which substance has the greater density? Explain why.

Density: A Physical Property Related to Mass and Volume

Discuss:

- 1) What is more dense, a gold ring or the entire Pacific ocean?
- 2) Compare the mass, volume, and density of a bottle of water to a swimming pool.

- Water has a density of 1g/mL
- More dense objects will sink (e.g. gold 19g/cm³ sinks in water)
- Less dense objects will float (e.g. vegetable oil 0.92g/mL floats in water)

Practice:

- 1) In water, will copper $(9g/cm^3)$ sink or float?
- 2) In honey (1.42g/mL), will coal (1.2g/cm³) sink or float?

Figure 2.7 These liquids have different densities. (Dyes were added to the liquids to help you see the layers.)

List the liquids in the order of most dense to least dense.

https://www.youtube.com/watch?v=-CDkJuo_LYs&ab_channel=SickScience%21

• To determine density, measure the mass and volume and then calculate using this equation:

• **Example**: If a sample of jet fuel has a mass of 8.30 g and a volume of 10.3 mL, what is its density?

The density of water is about 1 g/mL. Therefore the density of jet fuel is less than the density of water (it will float on top of water).

 The 355 mL cola beverage you are drinking has a mass of 371 grams. What is its density?

mass = 371g volume = 355mL density=?

 $density = \frac{mass}{volume} = \frac{371g}{355mL} = 1.04\frac{g}{mL}$

2) You have a rock with a volume of 15cm³ and a mass of 45 grams. What is its density?

volume = $15cm^3$ mass = 45g density=?

$$density = \frac{mass}{volume} = \frac{45g}{15cm^3} = 3\frac{g}{cm^3}$$

3) A mystery liquid in the graduated cylinder weighs 24.3 g.

a. What is its density?

Mass=24.3g Volume=30mL $density = \frac{mass}{volume} = \frac{24.3g}{30mL} = 0.81 \frac{g}{mL}$

b. What is the identity of the liquid?

methyl alcohol

	Density
Liquid	(g/cm^3)
acetone	0.792
alcohol (ethyl)	0.791
alcohol (methyl)	0.810
gasoline	0.66-0.69
corn syrup	1.38
castor oil	0.969
olive oil	0.918
linseed oil	0.942
vegetable oil	0.91-0.93
turpentine	0.87
water	1.00

Density Triangle:

- If you know two of the three values, then you can calculate the third.
- Cover up the unknown; triangle will tell you the formula to use!

$$>$$
 density = mass \div volume

 $rac{}$ volume = mass \div density

▶mass = density × volume

Note on units: dividing a unit by the same unit will 'cancel' them out.

4) Suppose you have a piece of chalk with a density of 2.5g/cm³. The chalk weighs 10g. What is the volume of your piece of chalk?

5) What is the mass of 150 mL of alcohol which has a density of 0.8g/mL?

6) Calculate the density of a ring that weighs 6.5g and has a volume of $1.2cm^3$.

Note on units: dividing a unit by the same unit will 'cancel' them out.

- 4) Suppose you have a piece of chalk with a density of $2.5 \frac{g}{cm^3}$. The chalk weighs 10g. What is the volume of your piece of chalk?
- 1. Write knowns $density = 2.5 \frac{g}{cm^3}$ mass = 10g volume =?
- 2. Write formula.

3. Plug in values (with units).

 $volume = mass \div density$ $= 10g \div \frac{2.5g}{cm^3}$

Think: dividing by fraction... multiply by reciprocal!

 $= 10g \times \frac{cm^3}{2.5g}$ $= 4cm^3$

4. Write answer (with units).

g divided by g 'cancels out'; left with cm³ only, which is a unit of volume!

Note on units: dividing a unit by the same unit will 'cancel' them out.

5) What is the mass of 150 mL of alcohol which has a density of 0.8g/mL?

- $density = 0.8 \frac{g}{mL}$ mass =? volume = 150mL1. Write knowns and unknowns.
- $mass = density \times volume$ 2. Write formula. $= 0.8 \frac{g}{mL} \times 150 mL$
- Plug in values 3. (with units).

= 120 g4. Write answer (with units).

mL divided by mL 'cancels out'; left with g only, which is a unit of mass!

Note on units: dividing a unit by the same unit will 'cancel' them out.

6) Calculate the density of a ring that weighs 6.5g and has a volume of $1.2cm^3$.

- 1. Write knowns and unknowns. density =? mass = 6.5g $volume = 1.2cm^3$
- 2. Write formula. $density = mass \div volume$
- 3. Plug in values $= 6.5g \div 1.2cm^3$ (with units).

4. Write answer (with units).

$$5.42 \frac{g}{cm^3}$$

Discussion Questions

- What is a physical property? Give three examples as part of your answer.
- What is the difference between a qualitative property and a quantitative property?

Concept 2: Matter can be described by its chemical properties.

• Chemical property:

- Ability of matter to react with another substance to form one or more new substances
- Can only be observed when a substance chemically interacts with another substance

Reactivity with acids is a chemical property. A gas forms when baking soda is mixed with vinegar (acid).

Chemical Properties: Examples

• Reactivity with acids:

- Some substances react vigorously with acids and others do not
- Example: baking soda and vinegar produce a gas
- Reactivity with oxygen:
 - Substances in some foods react with oxygen when exposed to air
 - Example: avocadoes turning brown

Chemical Properties: Examples

• Combustibility:

- Ability of material to catch fire and burn in the air
- -Example: burning wood

• Lack of reactivity:

- Substances that do not react with other substances are "inert"
- Example: helium in balloons

Chemical and Physical Properties [link to 'quiz']

Is the example below a chemical property or a physical property?

Iron rusts

Discussion Questions

- What is the main difference between physical and chemical properties?
- Explain why melting point is not a chemical property.

Concept 3: Matter can be described based on physical and chemical changes.

- Matter can be described based on:
 - -Physical changes
 - -Chemical changes

Figure 2.10: Preparing a meal involves many physical and chemical changes.

• Physical change:

- Change of matter that does not alter its chemical identity or composition
- -Example: freezing of water (liquid) to form ice (solid)

Figure 2.9: Freezing is a physical change

E.g. carbon dioxide (CO_2) sublimating

BC Science Connections 8, Copyright © McGraw-Hill Education

E.g. water (H_2O) evaporating

BC Science Connections 8, Copyright © McGraw-Hill Education

E.g. sugar dissolving in water (H_2O)

E.g. breaking things into smaller pieces

E.g. breaking things into smaller pieces

Review from 2.4: (Dalton's Atomic Theory)

- 1. All matter is made of extremely small particles called atoms.
- 2. Atoms cannot be created, destroyed, or divided.
- 3. All atoms of the same element are identical in size, mass, and chemical properties. Atoms of a specific element are different from those of another element.
- 4. Different elements combine in simple whole-number ratios to form compounds.
 In a chemical reaction, atoms are separated, combined, or rearranged.

• Chemical change

- -Change of matter that produces new substances
- Example: toasting bread (evidence of new substances forming: colour, texture, and smell of bread change when you toast it)

Toasting bread involves chemical changes.

Signs of Chemical Change:*

- Impossible to 'get back' starting ingredients
- Permanent change in physical properties:
 - Smell
 - Taste
 - Colour
 - Texture
- Bubbling (gas produced)
- Formation of solid
- Release of heat or light

*Chemical changes will often have multiple things on this list. However, physical changes (especially change of state) may sometimes show some of these signs: so be careful.

E.g. wood burning

E.g. hydrogen peroxide (H_2O_2) decomposing

https://www.youtube.com/watch?v=3Tn-7JcZJuQ&ab_channel=ISTscience

BC Science Connections 8, Copyright $\ensuremath{\mathbb C}$ McGraw-Hill Education

TOPIC 2.2 What are some ways to describe matter?

Chemical or Physical Changes? [link]

The Law of Conservation of Mass

• Antoine and Marie-Anne Lavoisier

- Carried out many chemical reactions where they measured the mass of the substances before (reactants) and after (products)
- Mass did not change when a chemical reaction took place

Figure 2.11 Lavoisier's experiment.

Lavoisier's Experiment

- Reactants: Sealed mercury(II) oxide (red powder) in a container
- Products (after heating): Liquid mercury and oxygen gas
- Mass of the reactants always equaled the mass of the products

The Law of Conservation of Mass

mass of reactants = mass of products

• In any chemical reaction, the total mass of the products is the same as the total mass of the reactants

Discussion Questions

- What is the main difference between a physical change and chemical change?
- State the law of conservation of mass in your own words.

Discussion Questions

• In Lavoisier's experiments, why was it important that the container be sealed? Explain your answer.

TOPIC 2.2 What are some ways to describe matter?

Concept 4: Matter can be classified based on how it responds to physical and chemical changes.

- Matter can be either a
 - -Mixture
 - -Pure substance
 - Compounds
 - Elements

A mixture of iron filings and sand (top); Lights that contain neon gas, an element (bottom)

Mixtures

• Mixtures

-Can be separated into parts by physical changes

Example: a mixture of iron filings and sand can be separated using a magnet

Mixtures

- Mixtures
 - -Can be separated into parts by physical changes
 - Parts have different identities
 - -Combination of two or more pure substances
 - -Components retain their chemical and physical properties

Heterogeneous Mixtures

- Non-uniform composition
- Can tell apart different components by looking with human eye or microscope

ne

Homogenous Mixtures

- Uniform composition
- Small particles, evenly distributed; cannot see particles even with a microscope
- E.g. solutions, alloys

BC Science Connections 8, Copyright $\ensuremath{\mathbb C}$ McGraw-Hill Education

Chloride ion, Cl-

 H_2O

TOPIC 2.2 What are some ways to describe matter?

Practice: Homogenous or Heterogeneous?

TOPIC 2.2 What are some ways to describe matter?

Practice: Homogenous or Heterogeneous?

Milk under light microscope, 2800x

Summary

Homogenous

- Uniform composition
- Small particles, evenly distributed

Heterogeneous

• Non-uniform composition

Homogeneous vs Heterogeneous Mixtures

A Homogeneous Mixture is a mixture that has a uniform appearance and composition throughout

A Heterogeneous Mixture is a mixture in which you can identify the component parts just by looking at it

Pure Substances: Compounds

• Pure substances: Compounds

-Can be broken down into two or more elements by chemical changes but not physical changes

Example: Passing an electric current through water produces the elements hydrogen and oxygen.

Pure Substances: Elements

- Pure substances: Elements
 - Cannot be separated or broken down by physical or chemical changes

Example: These lights contain neon gas, an element.

Thorium 232.03806

Periodic Table of Elements

	1	2	3	4	5	6	7	8		9	10	11	12	13	14	15	16	17	18	
1	1 ¹ H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid				Metals	5			Nonmet	als						2 ² He Helium 4.002802	к
2	3 ² 1 Li Lithium 6.941	4 2 Be Beryllium 9.012182	Hç H	Liquid Gas		Alkali me	Alkaline earth me	Lanthan	oids	Transitior metals	Poor met	Uther nonmetal	Noble ga	5 ² 3 B Boron 10.811	6 ² / ₄ C Carbon 12.0107	7 25 N Nitrogen 14.0067	8 ² ₆ O Oxygen 15.9994	9 27 F Fluorine 18.9984032	10 ² Ne 20.1797	ĸ
3	11 28 Na Sodium 22.98976928	12 28 Mg Magnesium 24.3050	R	f Unknov	wn	tals	tals	Actinoid	S	د	tals	<u>N</u>	Ses	13 28 Al Aluminium 28.9815386	14 28 Si Silicon 28.0855	15 28 P Phosphorus 30.973762	16 28 S Sulfur 32.085	17 28 Cl Chlorine 35.453	18 8 Ar Argon 39.948	K L M
4	19 28 K 1 Potassium 39.0983	20 28 Ca 2 Calcium 40.078	21 \$ Scandium 44.955912 \$	22 Ti Titanium 47.887	² ² ² ² ² ² ² ³ ³ ³ ³ ² ³ ² ³ ² ³ ² ³ ² ³ ² ³ ² ³ ² ³ ¹¹ ² ² ³ ² ³ ¹¹ ² ² ³ ¹¹ ² ²	24 28 Cr 1 Chromium 51.9981	25 Mn Manganese 54.938045	26 13 2 13 2 13 2 13 2 13 12 10 10 10 10 10 10 10 10 10 10 10 10 10	² ⁸ ¹⁴ ² Cobalt 58.933	2 15 2 t 3195	28 28 Ni Nickel 58.6934	29 28 Cu 1 Copper 63.546	30 ² Zn ¹⁸ Zinc 65.38	31 ² Ga Gallium 69.723 ²	32 28 Germanium 72.64	33 ² As ¹⁸ Arsenic 74.92160	34 ² Selenium 78.96	35 28 Br 7 Bromine 79.904	36 ² Kr ^{Krypton} 83.798	K L M N
5	37 28 Rb 18 Rubidium 85.4678	38 28 Sr 28 Strontium 87.62	39 28 Y 92 Yttrium 88.90585	40 Zr ² irconium 91.224	² ⁸ ⁸ ⁹ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹² ¹⁰ ¹⁰ ¹⁰ ¹² ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	42 Mo 95.98	43 TC Technetium (97.9072)	⁸ 14 14 10 101.07	28 18 15 1 Rhodiu 102.90	2 8 18 16 1 um 0550	46 28 Pd 18 Palladium 108.42	47 28 Ag 18 Silver 107.8682	48 28 Cd 18 Cadmium 112.411	49 28 In 18 Indium 114.818	50 28 Sn 18 18 18 18 18 18 18 18 18 18	51 28 Sb 18 Antimony 121.760	52 28 Te 127.60 18 18 18 18 18 18 18 18 18 18 18 18 18 1	53 28 18 18 18 7 Iodine 128.90447	54 28 Xe 18 Xenon 131.293	KLMNO
6	55 28 Cs 18 Caesium 1 132.9054519	56 28 Ba 18 Barium 2 137.327	57–71	72 Hf Hafnium 178.49	² ⁸ ⁸ ⁸ ⁸ ⁸ Ta ¹⁸ ¹⁸ ² ¹¹ Tantalum ² ¹⁸ ¹⁰ ²	74 28 W 322 Tungsten 2 183.84	75 Re Rhenium 188.207	76 18 32 13 2 0smium 190.23	² ¹⁸ ¹⁸ ¹² ¹⁴ ¹ ¹⁴ ¹ ¹ ¹ ¹	2 8 18 32 15 1 17	78 28 Pt 17 Platinum 1 195.084	79 28 Au 18 Gold 1 196.966569	80 28 Hg 18 Mercury 200.59	81 28 TI 18 Thallium 204.3833	82 2 Pb 32 Lead 4 207.2	83 28 Bi 18 Bismuth 208.98040	84 28 Polonium (208.9824)	85 28 At 18 Astatine 7 (209.9871)	86 28 Rn 18 Radon 28 18 22 18 8 (222.0176)	KLZZOP
7	87 28 Fr 18 Francium 81 (223)	88 2 Ra 18 Ra 18 Radium 2 (228)	89–103	104 Rf Rutherfordium	² ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸	106 28 Sg 322 Seaborgium 22 (288)	107 Bh Bohrium (284)	⁸ ¹⁸ ³² ³² ¹³ ¹² ¹³ ¹² ¹³ ¹⁴ ¹⁰⁸ HS ¹⁰⁸ ¹⁰⁸ ¹⁰⁸	² ⁸ ¹⁸ ³² ³² ¹⁴ ¹⁴ ¹⁴ ¹⁴ ¹⁶ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁹ ¹⁰⁰ ¹⁰ ¹	2 8 18 32 32 erium 2	110 28 Ds 33 Damstadtum 17 (271) 1	111 28 Rg 32 Roentgenium 1 (272) 1	112 Uub Ununbium (285) 2 2 2 2 2 2 2 2 2 2 2 2 2	113 Uut Ununtrium (284) ² ⁸ ³ ² ⁸ ³ ² ³ ² ³ ³ ³ ³ ³ ³ ³ ³	$\begin{array}{c} 114 & {}^2_8 \\ \textbf{Uuuq} & {}^{18}_{32} \\ {}^{18}_{32} \\ {}^{22}_{32} \\ {}^{(289)} & {}^4 \end{array}$	115 28 Uunpentum 22 (288) 28	116 Uuh Ununhexium (292) 28 18 22 18 18 22 18 18 22 18 22 18 22 18 22 18 22 22 18 22 22 22 22 22 22 22 23 23 23	117 Uus Unurseptum	118 Uuo Ununoctium (294) ² 8 8 22 18 8 8 8 8 8 8 8 8 8 8 8 8 8	KLZZORG
For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.																				
			Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/																	
	Dia	bla		57 La ¹ Lanthanum 138.90547	² 58 ² Ce ¹⁸ ² Cerium ² ^{140.116}	59 28 Pr 21 Praseodymium 2 140.90765	60 Nd Neodymium 144.242	61 8 22 8 2 Promethium (145)	² ¹⁸ ²³ ² ³ ⁸ ² ⁸ ⁸ ⁸ ⁹ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	2 8 18 24 rium 2 3	63 28 Eu 28 Europium 22 151.964	64 28 64 28 18 25 Gadolinium 157.25	65 28 Tb 27 Terbium 22 158.92535	66 2 Dy Dysprosium 162.500	67 28 Ho 18 Holmium 164.93032	68 28 Er 30 Erbium 2 167.259	69 28 Tm 18 Thulium 168.93421	70 28 Yb 32 Ytterbium 173.054	71 2 Lu ¹⁸ Lutetium 2 174.9668	
		com		89 Ac Actinium	90 2 Th 18 2 2 2 2 3 2 2 3 2 3 2 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	91 20 Pa 20 Protactinium 20	92 U Uranium	² ⁸ ¹⁸ ¹⁸ ²¹ ⁹ ⁹ Neptunium	² ⁸ ¹⁸ ²² ²² ⁹ ⁹ ⁹ ¹⁰	2 8 18 32 24 ium 2	95 20 Am 27 Americium 27	96 2 Cm 32 Curium 9 25 Curium 9	97 2 Bk 18 32 27 Berkelium 2 27	98 2 Cf 28 Californium 226 Californium 226	99 2 Es 32 Einsteinium 2	100 ² Fm ¹⁸ Fermium ² ⁸	101 ² Md ¹⁸ Mendelevium ⁸ 21 Mendelevium ⁸ 22	102 ⁸ No ¹⁸ Nobelium ⁸ ²²	103 ² Lr ¹⁸ Lawrencium ⁹ / ₂	

Curium (247)

BC Science Connections 8, Copyright © McGraw-Hill Education

Fermium

TOPIC 2.2 What are some ways to describe matter?

BC Science Connections 8, Copyright $\ensuremath{\mathbb O}$ McGraw-Hill Education

Discussion Questions

- Classify each of the following as a mixture or a pure substance:
 - a) oxygen
 - b) lemonade
 - c) mercury(ii) oxide

Summary: What are some ways to describe matter?

- Matter can be described by its physical properties.
- Matter can be described by its chemical properties.
- Matter can be described by on physical and chemical changes.
- Matter can be classified based on how it responds to physical and chemical catches.

