TOPIC 1.2 What are different ways that living things reproduce asexually?

McGraw-Hill Ryerson

BC Science CONNECTIONS

BC Science Connections 9 Unit 1: The continuity of life depends on cells being derived from cells

BC Science Connections 9, Copyright © McGraw-Hill Education

Topic 1.2: What are different ways that living things reproduce asexually?

- Bacteria reproduce by binary fission.
- All eukaryotic cells reproduce by the cell cycle.
- Yeasts reproduce by budding.
- Moulds reproduce using spores.
- Plants have many ways to reproduce asexually.

Concept 2: All eukaryotic cells reproduce by the cell cycle.

- Purpose of cell division:
- Replace older cells
- Replace damaged cells
- Produce new offspring in singlecelled organisms (amoebas)

Figure 1.8: A scab forms as some of the remaining skin cells beneath the wound reproduce repeatedly to form a new skin layer to replace what was scraped away.

Reproduction and the Cell Cycle

The **cell cycle** has two stages:

1. Growth and development

• Interphase (replication of DNA, regular cell activities)

2. Cell division

- Mitosis (division of nucleus)
- Cytokinesis (division of cytoplasm and cell membrane)

https://www.youtube.com/embed/gcz1FOWw0Cg?start=0&end=241

BC Science Connections 9, Copyright © McGraw-Hill Education

Chromosomes Elaborations (not in textbook)

- Each chromosome has one centromere.
- Chromosomes look different depending on whether DNA has been copied yet.

https://microbenotes.com/chromosome-structure-types-and-functions/

Chromosomes Elaborations (not in textbook)

Chromatid: a complete (double helix) copy of the DNA sequence that is on one chromosome

Sister chromatids: *identical* chromatids (same DNA sequence); formed by replication during interphase

How many chromosomes in each stage? How many chromatids?

What phase? How many chromosomes? How many chromatids?

https://datbootcamp.com/biology-strategy/chromosome-and-chromatid-numbers-during-mitosis-and-meiosis/

BC Science Connections 9, Copyright © McGraw-Hill Education

What phase? How many chromosomes? How many chromatids?

https://datbootcamp.com/biology-strategy/chromosome-and-chromatid-numbers-during-mitosis-and-meiosis/

BC Science Connections 9, Copyright $\ensuremath{\mathbb S}$ McGraw-Hill Education

What phase? How many chromosomes? How many chromatids?

https://datbootcamp.com/biology-strategy/chromosome-and-chromatid-numbers-during-mitosis-and-meiosis/

BC Science Connections 9, Copyright © McGraw-Hill Education

Growth and Development: Interphase

- Regular cell processes (growth, number of organelles increases)
- DNA (chromatin) is copied

Cell Division: Phase 1 of Mitosis (Prophase)

- Nuclear membrane begins to disappear
- DNA condenses into chromosomes

Note about diagram: Red chromosomes from mom; blue chromosomes from dad

Each pair of chromosomes with the same shape and length contains the same gene locations: they are a homologous pair of chromosomes.

Cell Division: Phase 2 of Mitosis (Metaphase)

- Spindle fibres attach to chromosome centromeres
- Spindle fibers pull chromosomes to the middle of the cell

Cell Division: Phase 3 of Mitosis (Anaphase)

- Spindle fibers pull chromosomes apart
- Sister chromatids go to each end of the cell

Cell Division: Phase 4 of Mitosis (Telophase)

• New nuclear envelopes form around each set of chromosomes

Cell Division: Cytokinesis

- Cytoplasm and organelles are divided
- New cell membrane (and cell wall in plant cells) forms between daughter cells
- DNA unravels to form chromatin, as the cell enters interphase

Cell Cycle Summary: Overall

Figure 1.9: Cell reproduction by mitosis results in daughter cells that are genetically identical to each other and to the parent cell.

BC Science Connections 9, Copyright © McGraw-Hill Education

Cell Cycle Summary: Nucleus

Stage of the Cell Cycle	Nucleus
Interphase	\checkmark
Mitosis: Prophase	Breaks down
Mitosis: Metaphase	X
Mitosis: Anaphase	X
Mitosis: Telophase	Reforms (2 nuclei)
Cytokinesis	\checkmark

Cell Cycle Summary: DNA

Stage of the Cell Cycle	DNA Appearance	Extra Notes
Interphase	Chromatin	DNA replicates
Mitosis: Prophase	DNA condensing	2 chromatids per chromosome
Mitosis: Metaphase	Chromosome	/
Mitosis: Anaphase	Chromosome	Sister chromatids separate; 1 chromatid per chromosome
Mitosis: Telophase	Chromosome	/
Cytokinesis	Chromatin	Each nucleus has a complete set of DNA

Discussion Questions

- 1. What happens to the DNA in a cell during interphase? Why is this step important for the reproduction process?
- 2. In two or three sentences, describe what the cell cycle is.

Concept 1: Bacteria reproduce by binary fission.

Bacteria: Micro-organisms that exist as single prokaryotic cells

Reproduce asexually by a process called binary fission

Note: binary fission occurs in **both** eukaryotic and prokaryotic organisms, but in eukaryotic organisms the process is simple mitosis.

Figure 1.6: Bacteria are in, on, and all around us. Bacteria is used in food production (left) and can cause disease, such as strep throat (right).

Reproduction by Binary Fission

Binary fission

- Type of asexual reproduction
- A parent cell splits into two individual, identical cells (daughter cells)
- Daughter cells have identical genetic information (DNA)

Figure 1.7: Binary fission

Reproduction by Binary Fission (continued)

Figure 1.7: (A) Binary fission. (B) Many types of bacteria are found as chains and clusters.

Reproduction by Binary Fission (continued)

Discussion Questions

1. What key piece of evidence tells you that bacteria reproduce asexually?

Concept 3: Yeasts reproduce by budding.

Yeasts are unicellular eukaryotic micro-organisms

- Commonly used to make dough, bread, pretzels, soy sauce, cheese, vinegar
- Reproduce by asexual reproduction: budding

Figure 1.11: Yeast

Asexual Reproduction in Yeast: Budding

Budding:

- Yeast cell grows a bud that pinches off to become a separate cell
- New cell is smaller than original cell at first
 - Eventually grows to the same size as other yeast cells

Figure 1.11: Yeasts reproduce asexually by budding.

BC Science Connections 9, Copyright $\ensuremath{\mathbb O}$ McGraw-Hill Education

Discussion Questions

- In what ways is reproduction in yeasts and bacteria similar? In what ways is it different?
- 2. Why is a daughter yeast cell identical to the parent cell?

Concept 4: Moulds reproduce using spores.

Moulds are composed of many eukaryotic cells

Reproduce by asexual reproduction using spores

Figure 1.12: Moulds reproduce using spores.

Asexual Reproduction in Moulds: Spores

- Spores are released into the air from a specialized structure
- When a spore lands in a favourable environment (warm, moist), it grows and divides by mitosis and cytokinesis

Figure 1.12: Moulds reproduce using spores.

Discussion Questions

1. What role do spores play in the asexual reproduction of moulds?

Concept 5: Plants have many ways to reproduce asexually.

Plants reproduce sexually and asexually

- Asexual reproduction: Vegetative propagation
 - New plants grow from a portion of the roots, stems, or leaves from an existing plant
 - New plants are **clones** (copies) of the parent plant

Vegetative Propagation: Example

Potatoes:

- New roots and shoots grow from the eyes of a potato
- If you plant a potato with this new growth, a potato plant will develop
- The new plant will be identical to the parent plant

Figure 1.13

Vegetative Propagation: Example

- **Runners** are horizontal stems that give rise to new plants
- E.g. strawberries, buttercup, clover

Figure 1.13: If you look closely at a field of strawberry plants, you will see smaller plants growing near a larger plant. These smaller plants are new plants that grow along runners. Runners are like stems that grow horizontally, above the ground, from a full-grown plant. Eventually runners die, leaving independent, identical plants.

Artificial Vegetative Propagation

Artificial vegetative propagation uses techniques to produce plants with specific characteristics

Example: Grafting

- A bud, stem, or root is cut from one plant and joined to another
- Used to produce trees with highquality fruit or resistance to disease

TOPIC 1.2 What are different ways that living things reproduce asexually?

Discussion Questions

- 1. Describe an example of vegetative propagation.
- 2. Why are new strawberry plants that form from runners identical to the parent plant?

Topic 1.2 Summary: What are different ways that living things reproduce asexually?

- Bacteria reproduce by binary fission.
- All eukaryotic cells reproduce by the cell cycle.
- Yeasts reproduce by budding.
- Moulds reproduce using spores.
- Plants have many ways to reproduce asexually.

