Chapter 6.1: Types of Chemical Reactions

Balance these equations.

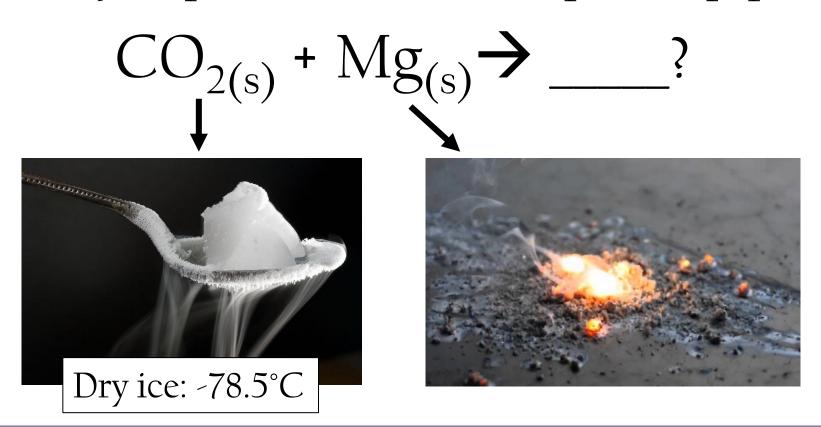
1) ____ N₂ + _3 F₂
$$\rightarrow$$
 _2 NF₃
2) _2 KClO₃ \rightarrow _2 KCl + _3 O₂
3) ___ C₁₂H₂₂O₁₁ + _12 O₂ \rightarrow _12 CO₂ + _11 H₂O
4) _3 CuSO₄ + _2 Fe \rightarrow _ Fe₂(SO₄)₃ + _3 Cu
5) ___ MgF₂ + __ Li₂CO₃ \rightarrow _ MgCO₃ + _2 LiF
6) __ H₃PO₄ + _3 NH₄OH \rightarrow _3 H₂O + _ (NH₄)₃PO₄

Balance these equations.

```
Balancing chemical equations is useful, but only if we already know the reactants and products.

Balancing chemical equations is useful, but only if we already know the reactants and products.

H<sub>2</sub>O


CuSO<sub>4</sub> + \frac{2}{2} Fe \Rightarrow Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> + \frac{3}{2} Cu

MgF<sub>2</sub> + Li<sub>2</sub>CO<sub>3</sub> \Rightarrow MgCO<sub>3</sub> + \frac{2}{2} LiF

H<sub>3</sub>PO<sub>4</sub> + \frac{3}{2} NH<sub>4</sub>OH \Rightarrow \frac{3}{2} H<sub>2</sub>O + (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>
```

Predict the products.

Write your prediction down on a piece of paper.

Discuss: what do we have to consider when making predictions?

Warm-up

Discuss: what do we have to consider when making predictions?

Law of Conservation of Mass: atoms are never created or destroyed. Elements in reactants must be the same as elements in the products.

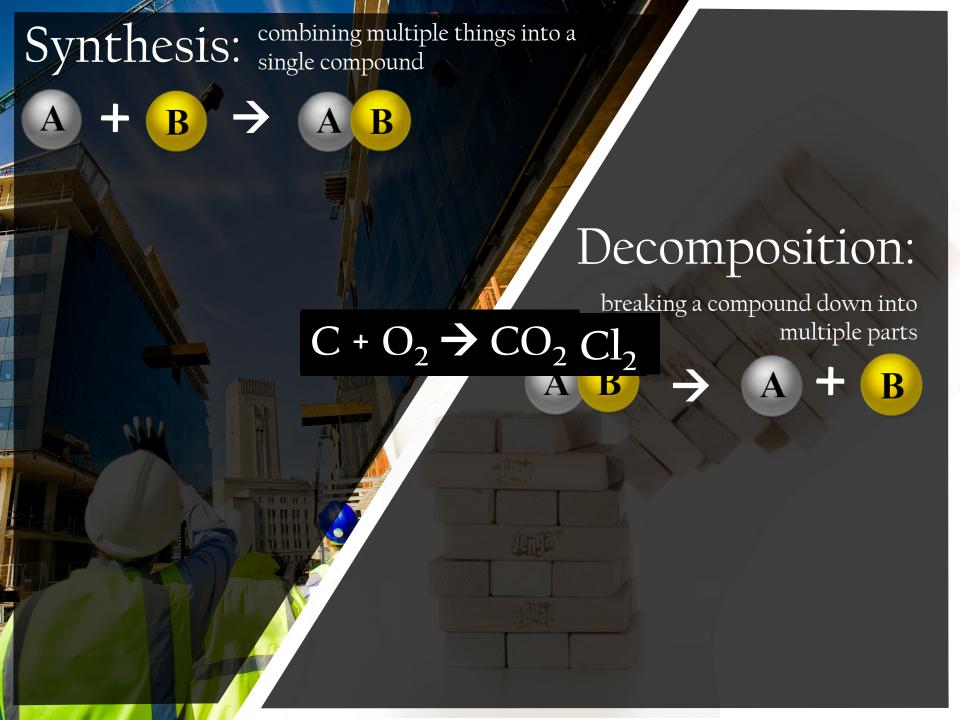
Which of these are possible?

	Products	Possible?
$CO_{2(s)} + Mg_{(s)} \rightarrow$	$C + O_2 + Mg$	√
	CO + MgO	√
	CH ₃ + Mg	X
	$CO_3 + Mg_2$	X
	$C_4 + MgO_2$	X
	$C + Mg + O_2 + MgO$	✓

Magnesium Burning in Carbon Dioxide

THE PERIODIC TABLE OF VIDEOS

By Brady Haran


The University of Nottingham

 $CO_{2(s)} + Mg_{(s)} \rightarrow MgO_{(s)} + C_{(s)}$

Introduction

To correctly predict products of a reaction, we will need to know:

- Law of Conservation of Mass: atoms are never created or destroyed; they are just rearranged in chemical reactions.
- Different types of reactions: synthesis, decomposition, single replacement, double replacement, neutralisation, combustion
- Balancing: How much reactant? How much product?

Synthesis: combining multiple things into a single compound

$$A + B \rightarrow AB$$

$$C + O_2 \rightarrow CO_2$$

$$Al + F_2 \rightarrow AlF_3$$

$$Mg + N_2 \rightarrow Mg_3N_2$$

$$K + O_2 \rightarrow K_2O$$

Decomposition:

breaking a compound down into multiple parts

$$\begin{array}{c|c} A & B \\ \rightarrow & A \\ \end{array} \begin{array}{c} + & B \\ \end{array}$$

$$K_2O \rightarrow K + O_2$$

$$H_2O \rightarrow H_2 + O_2$$

$$MgF_2 \rightarrow Mg + F_2$$

$$AuCl_3 \rightarrow Au + Cl_2$$

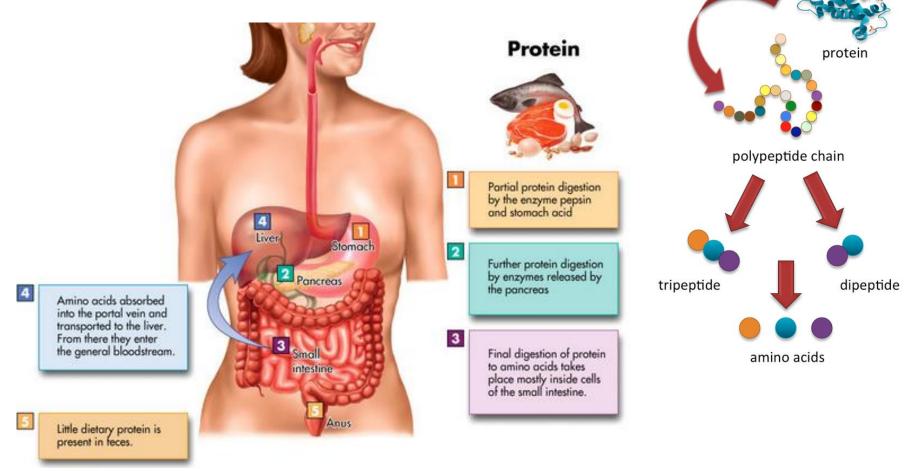
Synthesis: Real-Life Examples

Decomposition: Real-Life Examples

"Elephant Toothpaste" (hydrogen peroxide decomposition)

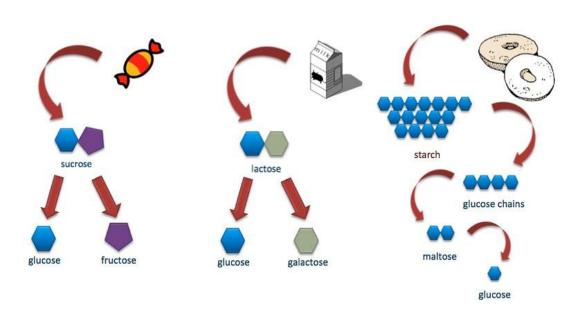
$$H_2O_2 \rightarrow H_2O + O_2$$

Watch


https://www.youtube.com/watc h?v=zbyqanuHQqU&ab channe l=VoyageDirectPrimaryCareVoy ageDirectPrimaryCare from 0:30

Decomposition: Real-Life Examples

During digestion, our foods are broken down into smaller parts that can be absorbed by the body.


protein \rightarrow amino acids

Decomposition: Real-Life Examples

During digestion, our foods are broken down into smaller parts that can be absorbed by the body.

complex carbohydrates \rightarrow simple sugars

Mouth

Salivary amylase breaks starch into sugar

Stomach

 pH is too low for amylase to work

Small Intestine

- Pancreatic juices neutralize stomach acids
- Intestinal and pancreatic enzymes complete carbohydrate digestion

Synthesis: Predict the Products

Predicting the products of a synthesis reaction is easy! Just write the formula of the ionic compound formed between the two elements.

Example:

$$2Na + Cl_2 \rightarrow 2NaCl$$

 $2Al + 3F_2 \rightarrow 2AlF_3$

Decomposition: Predict the Products

Predicting the products of a decomposition reaction is easy! Just write the formulas of the constituent elements.

Example:

$$CuCl_2 \rightarrow Cu + Cl_2$$

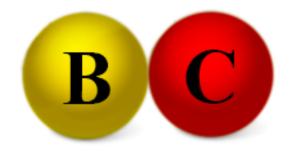
2 H₂O \rightarrow 2 H₂ + O₂

Summary Types of Reactions

Reaction Type	Reactants	Products	Tips for Predicting Products
Synthesis	□+□ →		Ionic compound between two elements. E+E→IC
Decomposition	$\Box \rightarrow$	_+_	Two elements. Remember diatomic. IC→E+E or CC→E+E

Single/Double Replacement

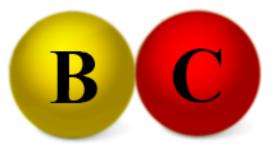
Replacement reactions always involve at least one ionic compound.


Single Replacement

Single Replacement

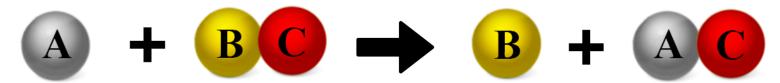
If A is a METAL:

What will the product(s) be?


Single Replacement

Single Replacement

If A is a NON-METAL:



What will the product(s) be?

Single Replacement

Single Replacement If A is a METAL:

If A is a NON-METAL:

$$A + BC \rightarrow C + BA$$

Examples:

CuSO₄ + Fe
$$\rightarrow$$
 Fe₂(SO₄)₃ + Cu
LiCl + Br₂ \rightarrow LiBr + Cl₂
HCl + Al \rightarrow H₂ + AlCl₃

Single Replacement: Predict the Products

To predict the products, write the formula of the new ionic compound that is formed, and the displaced element.

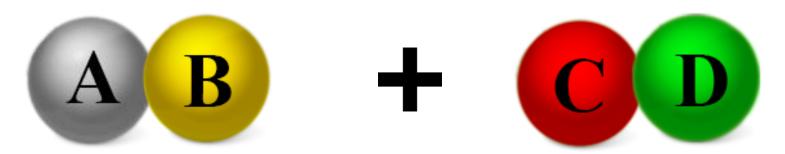
Examples:

$$2 \text{ Na} + \text{MgCl}_2 \rightarrow 2 \text{ NaCl} + \text{Mg}$$
 $O_2 + 2 \text{MgF}_2 \rightarrow 2 \text{F}_2 + 2 \text{MgO}$
 $2 \text{NaBr} + \text{Cl}_2 \rightarrow 2 \text{NaCl} + \text{Br}_2$

Replacement Reactions: Real-Life Examples

Concrete pillars contain iron rebar for structural strength. But iron reacts with salt water:

Fe + NaCl
$$\rightarrow$$
 FeCl₂ + Na



To prevent this, attach zinc or magnesium to the iron as a 'sacrificial' element. The following reaction will occur instead and the iron is preserved!

$$Zn + NaCl \rightarrow ZnCl_2 + Na$$

Double Replacement

Double Replacement

Examples:

MgS + CaCl₂
$$\rightarrow$$
 MgCl₂ + CaS
RbNO₃ + BeF₂ \rightarrow Be(NO₃)₂ + RbF
NH₄HCO₃ + NaCl \rightarrow NaHCO₃ + NH₄Cl
H₃PO₄ + NH₄OH \rightarrow H₂O + (NH₄)₃PO₄*

^{*}This is actually a neutralization reaction, which is a type of double replacement. Stay tuned!

Replacement Reactions: Real-Life Examples

Baking soda (sodium bicarbonate) and vinegar (acetic acid) is an example of a double replacement!

$NaHCO_3 + CH_3COOH \rightarrow H_2O + CO_2$

Double Replacement: Predict the Products

To predict the products, write the formula of the two new ionic compounds that are formed. Use charge balancing rules.

Examples:

$$BaCl_2 + Na_2SO_4 \rightarrow NaCl + BaSO_4$$

 $AgNO_3 + NaCl \rightarrow NaNO_3 + AgCl$

Single/Double Replacement

Single Replacement If A is a METAL:

If A is a NON-METAL:

$$A + BC \rightarrow C + BA$$

Double Replacement

Summary Types of Reactions

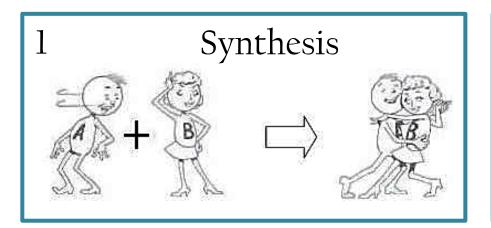
Reaction Type	Reactants	Products	Tips for Predicting Products
Synthesis	□+□ →		Ionic compound between two elements. E+E→IC
Decomp- osition	$\Box \rightarrow$	-+-	Two elements. Remember diatomic. IC→E+E or CC→E+E
Single Replacement	□+□ → E + IC→		Replace like with like. Ionic compound has cation and anion. Remember diatomic elements.
Double Replacement	□+□ → IC+IC →		Replace like with like. Ionic compound has cation and anion.

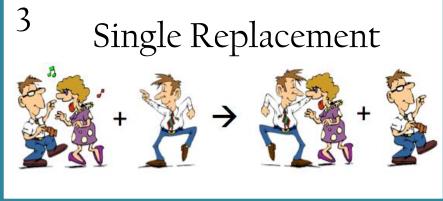
Mini Lab

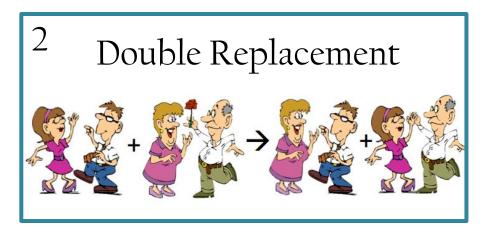
Predict the products of the following. Classify the reactions as synthesis, decomposition, single replacement or double replacement.

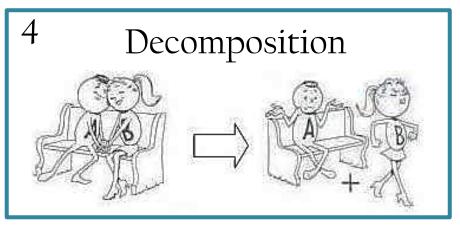
- 1) lead (II) nitrate + potassium iodide >
- 2) aluminum + copper(II) chloride →

$$Pb(NO_3)_{2 \text{ (aq)}} + KI_{\text{(aq)}}$$

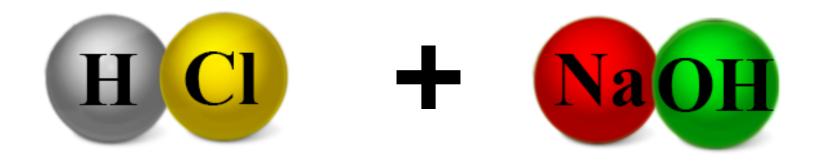

$$\rightarrow$$


$$PbI_{2(s)} + KNO_{3(aq)}$$

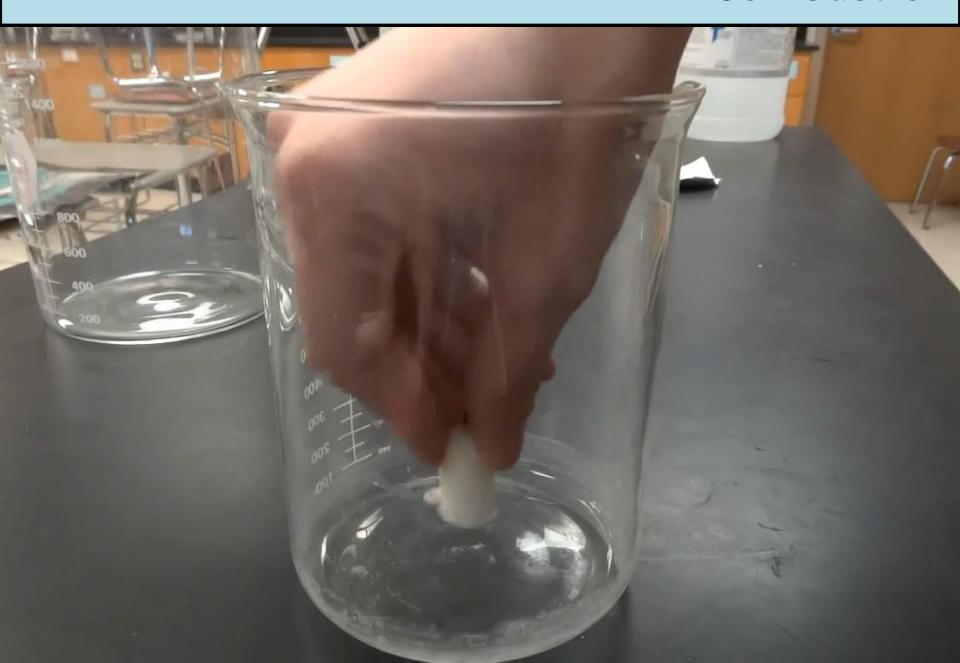

Precipitate:
an insoluble solid ionic compound that often forms in double replacement reactions

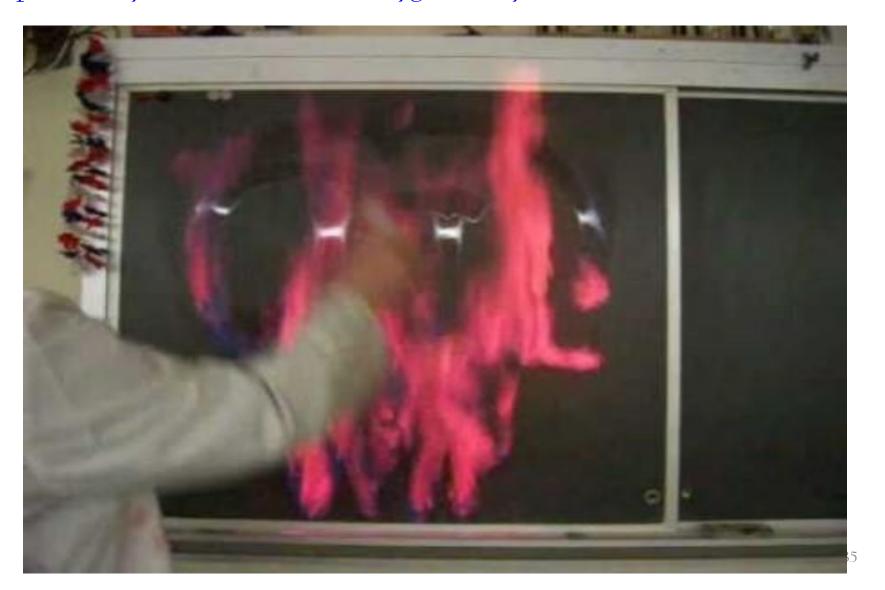

Dance Analogy (Warm-up)

What reaction types are these?



Neutralisation


Neutralisation is a type of double replacement reaction. (Sometimes, salts are precipitates)!


Combustion: organic compound (made of carbon, hydrogen, oxygen) burns in air to form carbon dioxide and water

$$C_xH_y + O_2 \rightarrow CO_2 + H_2O$$

$$C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O$$

https://www.youtube.com/watch?v=UygUcMkRy c&ab channel=MrLundScience

$$C_x H_y O_z + O_2 \rightarrow CO_2 + H_2 O$$

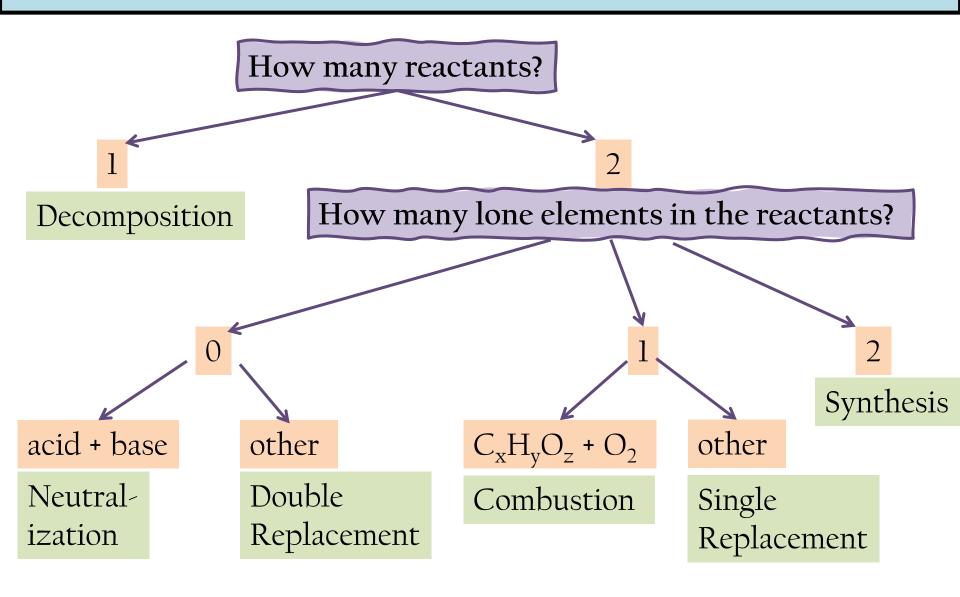
Candle wax: $C_{31}H_{64}$

Discussion

Why does water sometimes drip out from car tailpipes?

General Notes

- Balance your equations!
- Beware diatomic elements! (H, I, Br, O, N, Cl, F)
 - Decomposition
 - Single replacement


Exit Slip (/5)

- Observations: Before, During, After (/1)
- Chemical Equation
 - Reactants (/1)
 - Products (/1)
 - Balancing (/l)
- What type of reaction?
 - Synthesis, Decomposition, Single Replacement, or Double Replacement? (/1)

Summary Types of Reactions

Reaction Type	Reactants	Products	Tips for Predicting Products
Synthesis	□+□ →		Ionic compound between two elements. E+E→IC
Decomp- osition	$\Box \rightarrow$		Two elements. Remember diatomic. IC→E+E or CC→E+E
Single Replacement	E + IC→	E+IC	Replace like with like. Ionic compound has cation and anion. Remember diatomic.
Double Replacement	IC+IC→	IC+IC	Replace like with like. Ionic compound has cation and anion.
Neutralisation	HY + XOH→	$H_2O + XY$	Ions that are not hydrogen or hydroxide combine to form ionic compound salt.
Combustion	$C_x H_y O_z + O_2 \rightarrow$	$H_2O + CO_2$	Very easy. Is always the same.

Summary Types of Reactions

Resources

Lots of videos on youtube! Some among many...

```
Most reaction types (missing neutralisation):
       https://www.youtube.com/watch?v=aMU1RaRulSo&t=194s
       https://www.youtube.com/watch?v=2qX9MOQOmAM
Synthesis (lots of examples)
       https://www.youtube.com/watch?v=X-yVwNeb0aI
Synthesis/decomposition (goes slowly)
       https://www.youtube.com/watch?v=XgRZjfLfWMY
Synthesis/decomposition (has cool demos)
       https://www.youtube.com/watch?v=yS8noHTIJ_E
Single/double replacement
       https://www.youtube.com/watch?v=zMHglxTCHyE
Combustion
       https://www.youtube.com/watch?v=sgHDzTH GyU
```

Resources

Khan Academy!

Single Replacement:

https://www.khanacademy.org/science/chemistry/chemical-reactions-stoichiome/types-of-chemical-reactions/a/single-replacement-reactions

Double Replacement:

<u>https://www.khanacademy.org/science/chemistry/chemical-reactions-stoichiome/types-of-chemical-reactions/a/double-replacement-reactions</u>