Name:	Date:	Block:
WARM-UP		
1) $\N_2 + \F_2 \rightarrow \NF_3$		
2) KClO ₃ \rightarrow KCl +	O ₂	
$3) _ C_{12}H_{22}O_{11} + _ O_2 \rightarrow _$	$_{CO_2} + _{H_2O}$	
4) $\ CuSO_4 + \ Fe \rightarrow \ I$	$Ee_2(SO_4)_3 + \ Cu$	
5) $\MgF_2 + \Li_2CO_3 \rightarrow \$	MgCO ₃ + LiF	
6) H ₃ PO ₄ + NH ₄ OH →	H ₂ O +(NH ₄) ₃ PO ₄	

SYNTHESIS AND DECOMPOSITION

Synthesis reactions are chemical reactions in which two or more substances react to form a new product. The general form of a synthesis reaction is written as: $A + B \rightarrow AB$

Decomposition reactions are chemical reactions in which a reactant breaks down into two or more products. The general form of a decomposition reaction is written as: $AB \rightarrow A + B$

Balance the following reactions and identify whether the reactions are synthesis or decomposition reactions.

	Balance the Reactions	Synthesis or Decomposition?
1.	$H_2SO_4 \rightarrow H_2O + SO_3$	
2.	$_Cu + _S_8 \rightarrow _Cu_2S$	
3.	$_Zn(OH)_2 \rightarrow _ZnO + _H_2O$	

Identify the following reaction types and predict the products. Then, balance the equations.

	Predict and Balance the Reactions	Synthesis or Decomposition?
4.	$\Na + \I_2 \rightarrow \$	
5.	hydrogen + chlorine +→	
6.	$_Ag_2O \rightarrow _$	

Name: _____

Date:_____

Block:

SINGLE AND DOUBLE REPLACEMENT

Single replacement reactions are chemical reactions in which a metal or non-metal element replaces the corresponding metal or non-metal in an ionic compound. The general form of a single replacement reaction is written as A + BC \rightarrow AC + B (A is a metal) or A + BC \rightarrow C + BA (A is a non-metal).

Double replacement reactions are chemical reactions in which the positive ions in two ionic compounds 'switch places' to form two new ionic compounds. The general form of a double replacement reaction is written as AB + CD \rightarrow AD + CB.

Balance the following reactions and identify whether they are single replacement or double replacement.

	Balance the Reactions	Single or Double Replacement?
7.	$\underline{KI} + \underline{Br_2} \rightarrow \underline{KBr} + \underline{I_2}$	
8.	$\underline{BaCl_2 + Al_2(SO_4)_3 \rightarrow BaSO_4 + AlCl_3}$	
9.	$_AgNO_3 + Cu \rightarrow _Cu(NO_3)_2 + _Ag$	

Identify the following reaction types and predict the products. Then, balance the equations.

	Predict and Balance the Reactions	Single or Double Replacement?
10.	$_CuCl_2 + _F_2 \rightarrow _$	
11.	$\underline{K_2CO_3} + \underline{BaCl_2} \rightarrow $	
12.	calcium + aluminum nitride +→	

Name:

Date:_____

Block: _____

NEUTRALISATION

Neutralisation is a special example of a double replacement reaction where an acid and base react to form water and a salt. The general form of a neutralisation is HA + BOH \rightarrow H₂O + BA.

Identify the following reaction types and predict the products. Then, balance the equations.

	Predict and Balance the Reactions
13.	$_HCl + _Ba(OH)_2 \rightarrow _$
14.	NaOH +CH ₃ COOH →
15.	$_Ca(OH)_2 + _H_3PO_4 \rightarrow _$

COMBUSTION

Combustion is a reaction of an element or compound (often a hydrocarbon or alcohol) with oxygen to produce carbon dioxide and water. The general form of a hydrocarbon combustion reaction is $C_xH_y + O_2 \rightarrow CO_2 + H_2O$. Alcohol combustion leads to the same products (carbon dioxide and water).

(Note: Both neutralisation and combustion reactions produce water as a product.)

Predict the products of the following combustion reactions. Then, balance the equations.

	Predict and Balance the Reactions
16.	$_C_2H_6 + _O_2 \rightarrow _$
17.	$_C_8H_{18} + _O_2 \rightarrow _$

Name:

Date: _____

<u>6.1 Important Vocabulary</u>

- **Combustion**: the rapid reaction of an element or compound (usually a hydrocarbon or alcohol) with oxygen to form an oxide and to produce heat
- **Decomposition**: the breaking down of a compound into smaller compounds or separate elements
- **Double Replacement**: when two ionic solutions react to produce two other ionic compounds, one of which can be a precipitate
- Neutralisation: an example of a double replacement reaction where an acid and base react to form water and a salt
- **Precipitate:** an insoluble (does not dissolve) solid ionic compound that often forms in double replacement reactions
- Single Replacement: when a reactive element (metal or non-metal) and compound react to produce another element and another compound

Synthesis (Combination): where two or more reactants combine to produce a single product

It may help you to review:

- Ionic bonding (Ch. 4.1)
- Diatomic molecules (Ch. 4.1)
- Naming Compounds (Ch. 4.2)
- Balancing Equations (Ch. 4.3)
- Acid-Base Neutralization (Pg. 236 in textbook)