Balancing Chemical Equations

- Chemical "recipes": how much do you put in? how much do you expect to yield?
- Conservation of mass: no atoms are ever created or destroyed
- Balancing chemical formulas involves adding <u>coefficients</u> in front of elements and compounds until the total number of atoms of each element in the

coefficients

(balancing numbers)

subscripts (don't mess with these)

Reactants: what goes into the reaction

he reaction out of the reaction

Zn + 2HCl -> ZnCl₂ + H₂

Products: what comes

Tips for Balancing

- Goal: the number of atoms of each element in the reactants equals the products. Guess and check until this happens!
- Remember your diatomic elements: H, T Br, O, N, Cl, F
- Balance atoms in compounds first. Save elements for last.
- If the same polyatomic ion appears in the reactants and products, you can often treat it as a group of atom instead of splitting it up.
- At the end, reduce all coefficients to lowest whole-number terms.
- Note: Do not write a coefficient if there is only "1" of that element or compound.

Trick for Combustion Reactions (e.g. #10-12)

Balance every atom except oxygen.	$C_6H_{14} + C_2 \rightarrow CO_2 + 7 H_2O$
 Find out how many oxygen atoms you need theO₂ to contribute. Divide that number by 2. This is your <i>temporary</i> coefficient for O₂. 	$C_6H_{14} + \frac{19}{2}O_2 \rightarrow 6 CO_2 + 7 H_2O$
3. You are not allowed to have fractional coefficients in your final answer. Multiply all the coefficients by 2.	$2 C_6 H_{14} + 4 O_2 \rightarrow 12 CO_2 + 4 H_{2}O_{14}$

Practice

1. ___
$$N_2 + \underline{3} H_2 \rightarrow \underline{2} NH_3$$

2.
$$2 \text{ NaCl} + F_2 \rightarrow 2 \text{ NaF} + Cl_2$$

3.
$$4 P + 5 O_2 \rightarrow 2 P_2O_5$$

4.
$$2 \text{ Ag}_2\text{O} \rightarrow 4 \text{ Ag} + 0_2$$

5.
$$\underline{2}$$
 NaBr + $\underline{}$ CaF₂ \rightarrow $\underline{}$ NaF + $\underline{}$ CaBr₂

6. FeCl₃ +
$$\frac{3}{2}$$
 NaOH \rightarrow Fe(OH)₃ + $\frac{3}{2}$ NaCl

7. ___
$$H_2SO_4 + _2 NaNO_2 \rightarrow _2 HNO_2 + ___ Na_2SO_4$$

8.
$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow 6 \text{ C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$$

9.
$$2$$
 HCl + CaCO₃ \rightarrow CaCl₂+ H₂O + CO₂

10.
$$C_3H_8 + 5 O_2 \rightarrow 7 CO_2 + 4 H_2O$$

11.
$$\underline{}$$
 C₆H₁₄ + $\underline{}$ O₂ \rightarrow $\underline{}$ CO₂ + $\underline{}$ H₂O

12.
$$2 \text{ C}_8\text{H}_{18} + 25 \text{ O}_2 \rightarrow 16 \text{ CO}_2 + 18 \text{ H}_2\text{O}$$