

Overview

- What are chemical compounds? Why do they form?
- Ionic vs covalent compounds
 - Drawing Bohr models and Lewis diagrams
 - IUPAC naming conventions:
 - Covalent compounds
- Balanced Chemical Equations

Legend (for Sci9PW only):

Do not need to know this slide

A Need to know some of what is on this slide; for details, see the "Notes" section of powerpoint.

What are chemical compounds? Why do they form?

Review

- 1. Why do compounds form?
- 2. How do you draw the Bohr model for an atom? Ion?
- 3. What is a valence shell? Valence electron?
- 4. On the periodic table, where are the metals and non-metals? What is the difference?
- 5. Which of these compounds are ionic? Covalent? What's the difference?
- 6. How do you name ionic compounds?

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the middle of diagram:
 - Element symbol (e.g. "Cl" "F" "Na")
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - Electrons drawn singly starting from top and rotating clockwise
- 4. Ions only:
 - Add square brackets and a charge

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	rounded atomic mass minus atomic number	atomic number
lon	atomic number	rounded atomic mass minus atomic number	minus ionic

If the tenths place is a 4 or lower, round down.	32.1 → 32	65.4 → 65
If the tenths place is a 5 or higher, round up.	10.8 → 11	35.5 → 36

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	rounded atomic mass minus atomic number	atomic number
lon	atomic number	rounded atomic mass minus atomic number	minus ionic

		р	n	е
11 + Na	Na	11	23-11=12	11
Sodium 23.0	Na ⁺	11	23-11=12	11-(+1)=10
12 2+ Mg	Mg			
Magnesium 24.3	Mg ²⁺			
8 2- O	0			
Oxygen 16.0	O ²⁻			
17 – CI	Cl			
Chlorine 35.5	Cl-			7

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	rounded atomic mass minus atomic number	atomic number
lon	atomic number	rounded atomic mass minus atomic number	minus ionic

		р	n	е
11 + Na	Na	11	23-11=12	11
Sodium 23.0	Na ⁺	11	23-11=12	11-(+1)=10
12 2+ Mg	Mg	12	24-12=12	12
Magnesium 24.3	Mg ²⁺	12	24-12=12	12-(+2)=10
8 2- O	0	8	16-8=8	8
Oxygen 16.0	O ²⁻	8	16-8=8	8-(-2)=10
17 – CI	Cl	17	36-17=19	17
Chlorine 35.5	Cl-	17	36-17=19	18

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е
Na	11	23-11=12	11

Example: sodium atom

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е
Cl	17	36-17=19	17

Example: chlorine atom

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е
0	8	16-8=8	8

Example: oxygen atom

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е	
O ²⁻	8	16-8=8	8-(-2)=10	

Example: oxygen ion

Note: subtracting a negative is the same as adding.

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е
Mg ²⁺	12	24-12=12	12-(+2)=10

Example: magnesium ion

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	atomic number minus rounded atomic mass	atomic number
lon	atomic number	atomic number minus <i>rounded</i> atomic mass	atomic number minus ionic charge

		р	n	е	
11 + Na Sodium 23.0	Na	11	23-11=12	11	
	Na ⁺	11	23-11=12	11-(+1)=10	
12 2+ Mg Magnesium 24.3	Mg	12	24-12=12	12	
	Mg^{2+}	12	24-12=12	12-(+2)=10	
8 2- O Oxygen 16.0	0	8	16-8=8	8	
	O ² -	8	16-8=8	8-(-2)=10	
17 –	CI	17	24 17-10	17	
How come so many of the ions have the same					

How come so many of the ions have the same number of electrons? What is an ion, anyways?

Activity:

1. Draw the Bohr model for one of the following ions.

 N^{3-} O^{2-} F

 Mg^{2+} Al^{3+}

2. Compare your Bohr model with other students in the class. What do they have in common? What is different?

2. Compare the Bohr models. What do they have in common? What is different?

- The **valence shell** is the outermost shell containing electrons. Electrons in this shell are called **valence electrons**.
- A stable atom has a full valence shell.

- Atoms form **compounds** to have a full valence shell.
 - Ionic compound: atoms gain or lose electrons
 - Covalent compound: atoms share electrons

Valence shells can also be used to explain reactivity.

Alkali metals and halogens extremely reactive: only 1 electron away from full valence shell.

Alkaline earth metals and Group 16 elements very reactive: 2 electrons away.

Noble gases non-reactive.

HELIUM WALKS INTO A BAR. BARTENDER SAYS, "WE DON'T SERVE NOBLE GASES HERE."

He DOES NOT REACT.

Valence shells can also be used to explain reactivity.

Alkali metals and halogens extremely reactive: only 1 electron away from full valence shell.

Alkaline earth metals and Group 16 elements very reactive: 2 electrons away.

Noble gases non-reactive.

- Atoms form ions to have a **full valence shell**, just like the noble gases have.
- Electrons are negatively charged. When electrons are added or taken away, atoms become positively or negatively charged ions.
 - **Cation**: positively charged ion (e.g. Ca²⁺, Cr³⁺, NH₄+); forms when electrons are lost from an atom
 - **Anion**: negatively charged ion (e.g. N^{3-} , S^{2-} , PO_4^{3-}); forms when electrons are gained by an atom

Note: NH_4^+ and PO_4^{3-} are **polyatomic ions** because they consist of multiple ("poly-") atoms ("-atomic").

CATIONs: positive ions, protons > electrons

Cats are HAPPY.

ANIONS: negative ions, protons < electrons

Onions make you Cry (negative).

- Atoms are neutral because #protons = #electrons.
- Nitrogen atom becomes an ion when it gains 3 electrons.

nitrogen atom (neutral)

N 7p, 7n

nitrogen ion (3- charge)

Where do these electrons come from?

Ionic Compound Formation (NaCl)

• Ionic compounds form when **electrons are transferred** and ions are formed. Usually involves a **metal and a non-metal**.

sodium atom (neutral)

chlorine atom (neutral)

In order to get full valence shells:

- Na needs to lose 1 electron.
- Cl needs to **gain 1** electron.

Ionic Compound Formation (NaCl)

• Ionic compounds form when **electrons are transferred** and ions are formed. Usually involves a **metal and a non-metal**.

This ionic compound is **NaCl** (sodium chloride). It has one Na⁺ ion and one Cl⁻ ion.

29

Ionic Compound Formation (Li₂O)

• Ionic compounds form when **electrons are transferred** and ions are formed. Usually involves a **metal and a non-metal**.

oxygen atom (neutral)

- Li needs to **lose 1** electron.
- O needs to **gain 2** electrons.

<u>Problem</u>: Electron numbers not balanced.

Solution: The compound needs two lithium ions!

Ionic Compound Formation (Li₂O)

lithium atom (neutral)

oxygen atom (neutral)

lithium atom (neutral)

Ionic Compound Formation (Li₂O)

This ionic compound is Li_2O (lithium oxide). It has two Li⁺ ions and one O²⁻ ion.

Subscripts

Subscripts in Chemical Compounds

- **Subscripts** are small numbers written on the <u>bottom right</u> of an element or ion to show <u>how many</u> are in that compound.
- No subscript means there is only one of that element or ion.
- A subscript outside a bracket indicates multiples of a polyatomic ion (multiply subscripts!).

$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$
subscripts

Subscripts in Chemical Compounds

Important! If there is **no subscript**, this means
there is only **one** of that
element or ion.

Chemical Formula	How Many Atoms?	
N_2O_3	2 nitrogen 3 oxygen	
PF ₄	1 phosphorus 4 fluorine	
Li ₂ O	2 lithium ions 1 oxygen ion	
Ni_2S_3	2 nickel ions 3 sulfur ions	

Subscripts in Chemical Compounds

Practice!

How Many Atoms?

 Co_2S_3

Chemical Formula

PF₄

 $MgBr_2$

 Be_3N_2

Chemical Formula

How Many

Atoms?

 H_2O

CCl₄

CaCO₃

NaOH

Bohr Models of Ionic Compounds

Bohr Models of Ionic Compounds

- 1. Determine how many of each ion is in the compound, from the subscripts.
- 2. Use the periodic table to find the ionic charge of each ion.
- 3. Draw the Bohr models of all the ions in the compound. (They should all have full valence shells.)

Practice:

- a) MgCl₂
- b) Li₃N

Covalent Compound Formation

Covalent compounds form when two (or more) non-metal

This covalent compound is **H₂O** (water or dihydrogen monoxide). It has two hydrogen atoms and one oxygen atom.

Covalent Compound Formation

 Covalent compounds form when two (or more) non-metal atoms share electrons.

This covalent compound is **CO**₂ (carbon dioxide). It has one carbon atom and two oxygen atoms.

Introducing Lewis Structures

Bohr Model

- All electrons
- All energy shells
- Shows protons and neutrons
- Shows a lot of information, but is clunky and time-consuming

Lewis Structure

- Only valence electrons (except cations)
- Outermost shell only
- Protons and neutrons ignored
- Good at determining bonding in a covalent compound

Introducing Lewis Structures

Lewis Structures of Atoms

- 1. Write element symbol (capitalization matters!)
- 2. Draw valence electrons around, using the same positions as the Bohr model (i.e. clockwise, unpaired at first then paired)

Practice: Draw the Lewis structures of:

- a) Mg atom
- Mg•

c) H atom

b) N atom

· Ņ ·

d) F atom

Lewis Structures of Atoms

Valence Electrons in Each Group

1		G	ro	up)							,	2
1	2							3	4	5	6	7	8
1	2							 3	4	5	6	7	8
1	2							ത	4	5	6	7	8
1	2							3	4	5	6	7	8
1	2							3	4	5	6	7	8
1	2							3	4	5	6		

Look at the last digit of the group #. Exception: hydrogen and helium.

Rule 1: All electrons (from the bonded atoms) must be used.

Rule 2: All atoms must have a full valence shell.

- 1. Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
- 2. Determine how many bonds each atom "needs" to complete its valence shell.
- 3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Rule 1: All electrons (from the bonded atoms) must be used.

Rule 2: All atoms must have a full valence shell.

Example: H₂O

- Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
- 2. Determine how many bonds each atom "needs" to complete its valence shell.
- Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Rule 1: All electrons (from the bonded atoms) must be used.

Rule 2: All atoms must have a full valence shell.

Example: NH₃

- Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
- 2. Determine how many bonds each atom "needs" to complete its valence shell.
- Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Each H needs 1 bond; N needs 3 bonds.

Total e = 8

1 lone pair; 3 bonding pairs

Rule 1: All electrons (from the bonded atoms) must be used.

Rule 2: All atoms must have a full valence shell.

Example: CO₂

- Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
- 2. Determine how many bonds each atom "needs" to complete its valence shell.
- Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

C needs 4 bonds; each O needs 2 bonds.

Total e = 16

This is a double bond. It represents two bonding pairs of electrons.

4 lone pairs; 4 bonding pairs

Try drawing the following covalent compounds!

- HF
- PF₃
- CH₄
- N₂ *
- CH₂O
- CO₂H₄ (challenge)

^{*}Technically, N_2 is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

Try drawing the following covalent compounds!

H- : :	HF (3 lone pairs; 1 bonding pair)	 N≡N	N₂ * (2 lone pairs; 3 bonding pairs)
:F: :F-P-F:	PF ₃ (10 lone pairs; 3 bonding pairs)	H-C=O:	CH ₂ O (2 lone pairs; 4 bonding pairs)
H I H-C-H I H	CH ₄ (0 lone pairs; 4 bonding pairs)	H-C-Ö-Ö-H H	CO ₂ H ₄ (challenge) (4 lone pairs; 6 bonding pairs)

^{*}Technically, N_2 is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

Revisiting Diatomic Elements

- When in their elemental (i.e. not in a compound) form, these elements exist as diatomic molecules: two atoms bonding covalently to fill their valence shells.
- Must memorize!

Revisiting Diatomic Elements

Memory aids:

- HIBrONClF
- HOFBrINCl
- I Have No Bright Or Clever Friends
- Have No Fear Of Ice Cold Beer
- I Bring Cookies For Our New Home
- ...or make your own!

58	59		61	62	63			66			69		71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Identifying Elements, Ionic Compounds, Covalent Compounds

- Ionic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a non-metal.
- Covalent compounds
 form when two (or
 more) non-metal atoms
 share electrons.

Identifying Elements, Ionic Compounds, Covalent Compounds

In Science 9 and 10, you can use the following flowchart to tell apart elements and compounds.

(Note: in nature, many covalent compounds with 3+ elements exist; but we will not learn how to name them.)

Identifying Elements, Ionic Compounds, Covalent Compounds

Chemical	What is it?	Chemical	What is it?
PF ₃		NO ₂	
CaCl ₂		Br ₂	
Cl ₂		NaOH	
TiO		CCI ₄	
Al		MgBr ₂	

Reference

Non-metal Element	"-ide" Ending
N , nitrogen	
O , oxygen	
F , fluorine	
P , phosphorus	
S , sulfur	
CI , chlorine	

Non-metal Element	"-ide" Ending
Se , selenium	
Br , bromine	
I, iodine	
As , arsenic *	
Te , tellurium *	
At , astatine *	

Arabic Numeral	Roman Numeral	Prefix
1	1	mono
2	II	di
3	Ш	tri
4	IV	tetra
5	V	penta
6	VI	hexa
7	VII	hepta
8	VIII	octa
9	IX	nona
10	Χ	deca

^{*} uncommon

Chemical Nomenclature (Naming)

- It is important to have *one* system to name chemical compounds. Why?
 - Scientists can communicate with each other and the public, even in different languages
 - Every compound has a unique name
 - Information/records are accurate and consistent
- IUPAC (International Union of Pure and Applied Chemistry) came up with a naming scheme that is used around the world.

Monovalent ion:

- Can only make one ion (see periodic table)
- Cations: write name of element
- Anions: write name of element with "-ide" ending

Examples:

- Sodium ion = Na+
- Yttrium ion = Y^{3+}
- Bromide ion = Br -
- Oxide ion = O^{2}

Multivalent Ion:

- An element that can make *multiple possible ions* (see periodic table)
- Metals only
- Must specify charge with Roman numerals

Examples:

- manganese(III) = Mn^{3+}
- manganese(IV) = Mn^{4+}
- copper(I) = Cu^+
- vanadium(V) = V^{5+}

Note: manganese and magnesium are different elements!

Polyatomic ion:

- Group of non-metal atoms *covalently* bonded with an ionic charge
- Spelling counts!!! (Copy from table)

Examples:

- NH_4^+ = ammonium ion
- PO_4^{3-} = phosphate ion
- PO_3^{3-} = phosphite ion

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions		Negative Ions
NH ₄ ⁺ Ammonium	CH ₃ COO ⁻	Acetate
	CO ₃ ²⁻	Carbonate
	ClO ₃ ⁻	Chlorate
	ClO ₂ ⁻	Chlorite
	CrO ₄ ²⁻	Chromate
	CN ⁻	Cyanide
	Cr ₂ O ₇ ²⁻	Dichromate
	HCO ₃ ⁻	Hydrogen carbonate, bicarbonate
	HSO ₄ ⁻	Hydrogen sulfate, bisulfate
	HS ⁻	Hydrogen sulfide, bisulfide

Positive Ions		Negative Ions
	HSO ₃ ⁻	Hydrogen sulfite, bisulfite
	OH-	Hydroxide
	ClO ⁻	Hypochlorite
	NO ₃ ⁻	Nitrate
	NO ₂ ⁻	Nitrite
	ClO ₄ ⁻	Perchlorate
	MnO ₄ ⁻	Permanganate
	PO ₄ ³⁻	Phosphate
	PO ₃ ³⁻	Phosphite
	SO ₄ ²⁻	Sulfate
	SO ₃ ²⁻	Sulfite 62

"hydroxide" or "OH-" is made of an oxygen and hydrogen atom bonded together. Altogether, the structure has a charge of 1-.

e.g. sodium hydroxide: NaOH

"phosphate" or " PO_4^{3-} " is made of one phosphorus atom and four oxygen atoms bonded together. Altogether, the structure has a charge of 3-.

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts.

Chemical Formula

A subscript outside a bracket applies to the entire polyatomic ion inside the bracket.

$$Be_3(PO_4)_2$$

Simplified Model

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts. Treat polyatomic ions as single entities when naming, incl. counting atoms.

Chemical Formula	Cation	Anion	Atom Count
NaOH	Na ⁺ x1	OH-x1	Na:1 O:1 H:1
$Mg(OH)_2$	$Mg^{2+}x1$	OH-x2	Mg:1 O:2 H:1
Be ₃ (PO ₄) ₂			
$Ti_2(CrO_4)_3$			
(NH ₄) ₂ Cr ₂ O ₇			

Intro to Ionic Compound Nomenclature

Cation comes first; anion comes second.

Names of ionic compounds tell you which ions are in the compound.

- e.g. "sodium chloride" has Na⁺ and Cl⁻ ions.
- e.g. "titanium(IV) dichromate" has Ti^{4+} and $Cr_2O_7^{2-}$ ions.

Chemical formulae tell you how many of each ion are in the compound, using subscripts.

- e.g. "CaCl₂" has 1 Ca²⁺ ion and 2 Cl⁻ ions.
- e.g. "Mn(OH)₂" has 1 Mn⁴⁺ ion and 2 OH⁻ ions.

Intro to Ionic Compound Nomenclature

To write the name or formula of a compound, you must sometimes find out *which ions* are involved, through **charge balancing.**

Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges.

- 1. Write the *cation, first*.
- 2. Write the anion with "-ide" ending.

Chemical Formula	Periodic Table	Name
NaCl	11 + 17 - CI Sodium Chlorine 23.0 35.5	sodium chloride
MgBr ₂	12 2+ 35 - Mg Br Magnesium Bromine 79.9	magnesium bromide

- 1. Write the cation, first.
- 2. Write the anion with "-ide" ending.

Chemical Formula	Periodic Ta	able	Name	ion, we net charge ba
Cr ₂ O ₃	24 3+ Cr ²⁺	8 2- O	?	??
CrO	Chromium 52.0	Oxygen 16.0	?	??

Oh no! Chromium is multivalent: it has multiple possible ionic charges. To find out the charge on the chromium ion, we need to do charge balancing.

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.

For multivalent metals, determine the ion charge through **charge balancing**. Then, put the ion charge in **Roman numerals**, in brackets.

2. Write the anion with "-ide" ending.

Charge Balancing Part 1: Determining Charges of Multivalent Metals

8 2-O Oxygen 16.0

Cr ₂	O ₃ :
1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	$Cr^{?}$ O^{2-} We know there are 2 chromium ions and 3 oxygen ions from the subscripts in the formula.
2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 6 negative charges. Must have 6 positive to balance the charges. Divide by # of chromium ions (2). Therefore, each Cr ion must have a 3+ charge.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.	chromium(III) oxide

Charge Balancing Part 1: Determining Charges of Multivalent Metals

24	3+
Cr	2+
Chromit	ım
52.0	

8 2-O Oxygen 16.0

Cr) :
1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	Cr? O ² - ion and 1 oxygen ion from to subscripts in the formula
2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 2 negative charges. Must have 2 positive to balance the charges. Divide by # of chromium ions (1). Therefore, each Cr ion must have a 2+ charge.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.	chromium(II) oxide

Naming Ionic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.

For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.

If the cation is polyatomic, write it exactly the way it is written in the table.

2. Write the anion with "-ide" ending (unless it is polyatomic.)

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions		Negative Ions
NH ₄ ⁺ Ammonium	CH ₃ COO ⁻	Acetate
	CO ₃ ²⁻	Carbonate
	ClO ₃ ⁻	Chlorate
	ClO ₂ ⁻	Chlorite
	CrO ₄ ^{2–}	Chromate
	CN ⁻	Cyanide
	$\text{Cr}_2\text{O}_7^{2-}$	Dichromate
	HCO ₃ ⁻	Hydrogen carbonate, bicarbonate
	HSO ₄ ⁻	Hydrogen sulfate, bisulfate
	HS ⁻	Hydrogen sulfide, bisulfide

Positive Ions		Negative Ions
	HSO ₃ ⁻	Hydrogen sulfite, bisulfite
	OH-	Hydroxide
	ClO-	Hypochlorite
	NO ₃ ⁻	Nitrate
	NO ₂ ⁻	Nitrite
	ClO ₄ ⁻	Perchlorate
	MnO ₄ ⁻	Permanganate
	PO ₄ ³⁻	Phosphate
	PO ₃ ³⁻	Phosphite
	SO ₄ ²⁻	Sulfate
	SO ₃ ²⁻	Sulfite 75

Polyatomic ions: ions made of multiple atoms bonded covalently together. They have special names.

"hydroxide" or "OH-" is made of an oxygen and hydrogen atom bonded together. Altogether, the structure has a charge of 1-.

e.g. sodium hydroxide: NaOH

"phosphate" or " PO_4^{3-1} " is made of one phosphorus atom and four oxygen atoms bonded together. Altogether, the structure has a charge of 3-.

e.g. sodium phosphate: Na_3PO_4 chromium(II) phosphate: $Cr_3(PO_4)_2$

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts.

Chemical Formula

Simplified Model

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts. Treat polyatomic ions as single entities when naming, incl. counting atoms.

Chemical Formula	Cation	Anion	Atom Count
NaOH	Na ⁺	OH-	Na:1 O:1 H:1
$Mg(OH)_2$	Mg^{2+}	OH-x2	Mg:1 O:2 H:1
Be ₃ (PO ₄) ₂	Be ²⁺ x3	PO ₄ ²⁻ x2	Be:3 P:2 O:8
Ti ₂ (CrO ₄) ₃	Ti ³⁺ x2	CrO ₄ ²⁻ x3	Ti:2 Cr:3 O:12

Rules for Naming Ionic Compounds (FINAL)

1. Write the *cation, first*.

For metals that can only form one ion (monovalent metals), do not write the ion charge.

For multivalent metals, determine the ion charge through **charge balancing**. Then, put the ion charge in **Roman numerals**, in brackets.

If the cation is polyatomic, write it exactly the way it is written in the table.

2. Write the anion with "-ide" ending (unless it is polyatomic.)

Naming with Polyatomic Ions: Examples

Naming with Polyatomic Ions: Examples

Chemical Formula	Periodic Table	Name
Sc(HSO ₃) ₃	21 3+ Sc Scandium 45.0	1. scandiumhydrogen sulfiteOR2. scandium bisulfite
	HSO ₄ ⁻ Hydrogen sulfate, bisulfate	2. Scandidin bisunite
	HS ⁻ Hydrogen sulfide, bisulfide	scandium hydrogen sulfite, bisulfite
	HSO ₃ ⁻ Hydrogen sulfite, bisulfite	Sume, Disume

Naming with Polyatomic Ions: Examples

22 4+ Ti Titanium 47.9

ClO ₂	Chlorite
CrO ₄ ²⁻	Chromate
CN ⁻	Cvanide

Ti ₂ (CrO ₄) ₃ :		
1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	Ti? CrO ₄ ²⁻ CrO ₄ ²⁻ Ti? CrO ₄ ²⁻	
2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 6 negative charges. Must have 6 positive to balance the charges. Divide by # of titanium ions (2). Therefore, each Ti ion must have a 3+ charge.	
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals. Spell the polyatomic ion exactly as it is spelled in the reference sheet.	titanium(III) chromate	

Writing Formulas of Ionic Compounds

Intro to Ionic Compound Nomenclature

Names of ionic compounds tell you which ions are in the compound. The cation comes first; the anion comes second.

To write a chemical formula of an ionic compound, you must find out how many of each ion is involved, through **charge balancing.**

Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges.

Writing Formulas of Ionic Compounds (v1)

- 1. Write down each ion with its charge.
- 2. Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
- 3. Write your formula with subscripts.

To indicate more than one of a polyatomic ion, use brackets with the subscript outside.

20 2+

Ca

Calcium

40.1

15 3-

P

Phosphorus

31.0

calcium phosphide	
1) Write down each ion with its charge.	Ca ²⁺ P ³⁻
2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.	Ca ²⁺ P ³⁻ Ca ²⁺
3) Write your formula with subscripts.	Ca ₃ P ₂

24 3+ 2+ Chromium 52.0

HSO₃⁻ Hydrogen sulf

OH⁻ Hydroxide

ClO Hypochlorite

chromium(II) hydroxide	
1) Write down each ion with its charge.	Cr ²⁺ OH-
2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.	OH-
3) Write your formula with subscripts.	Cr(OH) ₂

Writing Formulas of Ionic Compounds (v2)

- 1. Write down each ion with its charge.
- 2. Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.
- 3. Reduce the subscripts if both divisible by the same number.

20 2+

Ca

Calcium

40.1

15 3–

P

Phosphorus

31.0

calcium phosphide

1) Write down each ion with its charge.

2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.

3) Reduce the subscripts if both divisible by the same number.

Ca²⁺ P³⁻
Ca₃P₂

2 and 3 do not have a common factor. Therefore, $\mathbf{Ca_3P_2}$ is our final answer.

24 3+ 2+ Cr Chromium 52.0

HSO₃⁻ Hydrogen sulf

OH⁻ Hydroxide

ClO Hypochlorite

chromium(II) hydroxide

1) Write down each ion with its charge.

2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.

3) Reduce the subscripts if both divisible by the same number.

Cr²⁺ OH Cr(OH)₂

1 and 2 do not have a common factor. Therefore, **Cr(OH)**₂ is our final answer.

12 2+ Mg Magnesium 24.3

 CH_3COO^- Acetate CO_3^{2-} Carbonate CIO_3^- Chlorate

magnesium carbonate

1) Write down each ion with its charge.

2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.

3) Reduce the subscripts if both divisible by the same number.

 $Mg^{2+} CO_3^{2-}$ $Mg_2(CO_3)_2$

2 and 2 are both divisible by 2. Rewrite formula as **MgCO₃**.

25 2+ Mn 3+ 4+ Manganese 54.9

PO₃³⁻ Phosphite

SO₄²⁻ Sulfate

SO₃²⁻ Sulfite

manganese(IV) sulfate

1) Write down each ion with its charge.

2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.

 $Mn_{2}^{4+}SO_{4}^{2-}$ $Mn_{2}(SO_{4})_{4}$

3) Reduce the subscripts if both divisible by the same number.

4 and 2 are both divisible by 2. Rewrite formula as **Mn(SO₄)₂**.

Naming and Writing Formulas: Covalent Compounds

Naming Binary Covalent Compounds

- Binary covalent compound: a covalent compound containing only two element
- Names and formulas of covalent compounds both tell you:
 - Which elements
 - How many atoms of each element

Naming Binary Covalent Compounds

- 1. Write the first element.
- 2. Write the second element with "-ide" ending.
- 3. Add prefixes to show how many of each element there is.
 - Do not add "mono-" to first element.
 - If adding "mono-" to "-oxide", write "monoxide" instead.

e.g. O ₂ F ₂	dioxygen difluoride
e.g. PF ₃	phosphorus trifluoride
e.g. N ₂ O	dinitrogen monoxide

Note: All compound names (covalent *and* ionic) are lowercase.

Naming Binary Covalent Compounds

Covalent compounds with special names (must memorize):

$$NH_4$$
 = ammonia \leftarrow H_4 (ammonium ion) and NH_4 (ammonia) are **not the same!!!** CH_4 = methane

Chemical Formulas of Binary Covalent Compounds

- 1. Identify the elements involved. Write their symbols.
- 2. Use the prefixes to determine the number of each element in the compound. Write as subscripts.
- e.g. tetraphosphorus pentaoxide P₄O₅
- e.g. nitrogen triiodide N I₃
- e.g. xenon hexafluoride
 Xe F₆

More Practice: Binary Covalent Compounds

Chemical	Formula
----------	----------------

Compound Name

 CO_2

CO

 CCl_4

 P_4O_5

diphosphorus pentaoxide

xenon hexafluoride

Fruit Tart Case Study

You are making fruit tarts for a party. Unfortunately, after you are finished, you see an Instagram picture that makes you want to rearrange your fruit tarts. You need 3 finished raspberry/blackberry tarts in total. How many of each tart will you start with? What will you be left with?

6 raspberries each

1 blackberry each

2 raspberries + 1 blackberry each

Fruit Tart Case Study

You are making fruit tarts for a party. Unfortunately, after you are finished, you see an Instagram picture that makes you want to rearrange your fruit tarts. You need 3 finished raspberry/blackberry tarts in total. How many of each tart will you start with? What will you be left with?

Discuss: approaches and strategies in completing this problem

Fruit Tart Case Study

1 blackberry each

2 raspberries + 1 blackberry each

fruitless tart

$$1Rb_6T + 3BbT \rightarrow 3Rb_2BbT + 1T$$

Legend

Rb = "raspberry" element

Bb = "blackberry" element

T = "tart" element

Follow-up: Now, suppose that you need 12 tarts instead of 3. How many raspberry and blackberry tarts do you start with?

Why balance?

- Chemical "recipes": how much do you put in? how much do you expect to yield?
- Conservation of mass: no atoms are ever created or destroyed

Balancing chemical formulas involves adding **coefficients** in front of elements and compounds until **the total atoms in the reactants equals the products**.

Balancing Chemical Equations: Vocabulary

Balancing chemical formulas involves adding **coefficients** in front of elements and compounds until **the total atoms in the reactants equals the products**.

- Element: made of one type of atom
- Compound: made of two or more types of atoms

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

Balancing Chemical Equations: Vocabulary

Balancing chemical formulas involves adding coefficients in front of elements and compounds until the total number of atoms of each element in the reactants equals the products.

Reactants: what goes

into the reaction

Products: what comes out of the reaction

Balancing Chemical Equations: Tips

- Goal: the number of atoms of each element in the reactants equals the products. Guess and check until this happens!
- Remember your diatomic elements: H, I, Br, O, N, CI, F
- Balance atoms in compounds first. Save elements for last.
- If the same polyatomic ion appears in the reactants *and* products, you can often treat it as a group of atoms instead of splitting it up.
- At the end, reduce all coefficients to lowest whole-number terms.

Note: balancing can be frustrating at first. Practice, practice!

Balancing Examples (easy)

1. ___
$$N_2 + _3 H_2 \rightarrow _2 NH_3$$

Note: Do not write a coefficient if there is only "1" of that element or compound.

2.
$$2 \text{ NaCl} + F_2 \rightarrow 2 \text{ NaF} + Cl_2$$

3.
$$\underline{4} P + \underline{5} O_2 \rightarrow \underline{2} P_2 O_5$$

4.
$$2 \text{ Ag}_2\text{O} \rightarrow 4 \text{ Ag} + \text{O}_2$$

Treat polyatomic ions as groups if they appear in reactants and products (e.g. #2 & #3 but not #5)

5.
$$\frac{2}{2}$$
 NaBr + $\underline{\qquad}$ CaF₂ \rightarrow $\underline{\qquad}$ NaF + $\underline{\qquad}$ CaBr₂

6. ___ FeCl₃ +
$$\frac{3}{2}$$
 NaOH \rightarrow ___ Fe(OH)₃ + $\frac{3}{2}$ NaCl

7. ___
$$H_2SO_4 + _2 NaNO_2 \rightarrow _2 HNO_2 + __ Na_2SO_4$$

8.
$$\underline{}^{6} CO_{2} + \underline{}^{6} H_{2}O \rightarrow \underline{} C_{6}H_{12}O_{6} + \underline{}^{6} O_{2}$$

9.
$$\frac{2}{100}$$
 HCl + ___ CaCO₃ \rightarrow ___ CaCl₂ + ___ H₂O + ___ CO₂

Balancing Examples (hard)

10.___
$$C_3H_8 + \underline{5}_0O_2 \rightarrow \underline{3}_0CO_2 + \underline{4}_0H_2O_1$$

$$11.\underline{{}^{2}}_{C_{6}H_{14}} + \underline{{}^{19}}_{O_{2}} O_{2} \rightarrow \underline{{}^{12}}_{CO_{2}} CO_{2} + \underline{{}^{14}}_{CO_{2}} H_{2}O_{2}$$

Make sure to balance the element (O₂) last!

$$12.\underline{2}$$
 $C_8H_{18} + \underline{25}$ $O_2 \rightarrow \underline{16}$ $CO_2 + \underline{18}$ H_2O

Trick for Combustion Reactions (e.g. #10-12)

1. Balance every atom except oxygen.

$$C_6H_{14} + C_0 \rightarrow \underline{6} CO_2 + \underline{7} H_2O_1$$

2. Find out how many oxygen atoms you need the $_{0}$ 0 to contribute. Divide that number by 2. This is your *temporary* coefficient for $_{0}$ 0.

 $6CO_2$ has 12 oxygen atoms. $7H_2O$ has 7 oxygen atoms. In total, there are 19 oxygen atoms in the products.

3. You are not allowed to have fractional coefficients in your final answer. Multiply all the coefficients by 2.

$$2 C_6 H_{14} + 19 O_2 \rightarrow 12 CO_2 + 14 H_2 O_2$$

Resources

- Naming and Writing Chemical Formulas
 - Mr. Carman's Blog (generates quizzes)
 https://www.kentschools.net/ccarman/cp-chemistry/practice-quizzes/compound-naming/
 - Mr. Eisley (list of other resources to practice <u>http://www.mreisley.com/nomenclature-practice.html</u>
 - ChemFiesta (worksheets with answers)
 https://chemfiesta.org/2015/01/13/naming-worksheets/
- Balancing Chemical Equations
 - TemplateLAB (explanations and many worksheets with answers) https://templatelab.com/balancing-equations-worksheet/

Practice

Classify as ionic or covalent. Then, name the following compounds:

Formula	Name
CO ₂	
Na ₂ O	
CrF ₃	
N_2Br_3	
MnO_2	

Try to classify as <u>ionic or covalent</u>. How are these compounds different from what we have seen so far?

Formula	Name
MgCO ₃	magnesium carbonate
Ca(CH ₃ COO) ₂	calcium acetate
NH ₄ Br	ammonium bromide
KCN	potassium cyanide

Whenever you have **more than 2 elements** in your ionic compound, you are dealing with a polyatomic ion. Polyatomic ions are almost always anions (except NH_4^+).

Ionic Compound Formation

Pronunciation: [kat-ahy-uh n, -on] -noun, Chemistry

- 1. An ion with a paws-itive charge.
- 2. The cutest ion ever.

https://www.reddit.com/r/chemistrymemes/comments/ccsxov/high_iq_meme/ https://www.chemistryjokes.com/jokes/cation/