Chemical Compounds

Bond Formation, Nomenclature, and Modelling

Overview

-What are chemical compounds? Why do they form?

- Ionic vs covalent compounds
- Drawing Bohr models and Lewis diagrams
- IUPAC naming conventions:
- Covalent compounds
- Balanced Chemical Equations

Legend (for Sci9PW only):

\triangle Do not need to know this slide
Δ Need to know some of what is on this slide; for details, see the "Notes" section of powerpoint.

What are chemical compounds? Why do they form?

Review

1. Why do compounds form?
2. How do you draw the Bohr model for an atom? Ion?
3. What is a valence shell? Valence electron?
4. On the periodic table, where are the metals and nonmetals? What is the difference?
5. Which of these compounds are ionic? Covalent? What's the difference?
6. How do you name ionic compounds?

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the middle of diagram:

- Element symbol (e.g. "Cl" "F" "Na")
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: $2,8,8,18$
- Electrons drawn singly starting from top and rotating clockwise

4. Ions only:

- Add square brackets and a charge

Review: Drawing Bohr Models of Atoms and lons

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	rounded atomic mass minus atomic number	atomic number
Ion	atomic number	rounded atomic mass minus atomic number	atomic number minus ionic charge

Atomic Number	\longrightarrow	22	$4+$
Symbol	\longrightarrow	Ti	$3+$
Name	\longrightarrow	Titanium	
Atomic Mass	\longrightarrow	47.9	

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	rounded atomic mass minus atomic number	atomic number
Ion	atomic number	rounded atomic mass minus atomic number	atomic number minus ionic charge

Atomic Number	\longrightarrow	22	$4+$
Symbol	\longrightarrow	Ti	$3+$
Name	\longrightarrow	Titanium	
Atomic Mass	\longrightarrow		

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number rounded atomic mass minus atomic number	atomic number	
Ion	atomic number	rounded atomic mass minus atomic number	atomic number minus ionic charge

Atomic Number	\longrightarrow	22
Symbol	$4+$	
Name	\longrightarrow	Ti
$3+$		
Atomic Mass	\longrightarrow	Titanium
		47.9

		p	n	e
$\begin{array}{ll} 11 \\ \mathrm{Na} \end{array}+$	Na	11	23-11=12	11
23.0	Na^{+}	11	23-11=12	$11-(+1)=10$
$\begin{aligned} & 12{ }^{2+} \\ & \mathbf{M g} \end{aligned}$	Mg	12	24-12=12	12
Magnesium 24.3	Mg^{2+}	12	24-12=12	$12-(+2)=10$
$\begin{array}{ll} 8 & 2- \\ 0 \end{array}$	\bigcirc	8	$16-8=8$	8
$\begin{aligned} & \text { Oxyen } \\ & \text { a } \end{aligned}$	O^{2-}	8	$16-8=8$	$8-(-2)=10$
$\begin{array}{ll} 17 \\ \mathrm{Cl} \end{array}-$	Cl	17	$36-17=19$	17
Choine 35.5	Cl^{-}	17	$36-17=19$	18

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: $2,8,8,18$
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Na	11	$23-11=12$	11

Example: sodium atom

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Cl	17	$36-17=19$	17

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
0	8	$16-8=8$	8

Example: oxygen atom

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion
charge from periodic table

Example: oxygen ion

	p	n	e
O^{2-}	8	$16-8=8$	$8-(-2)=10 \quad$?

Note: subtracting a negative is the same as adding.

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Mg^{2+}	12	$24-12=12$	$12-(+2)=10$

Example: magnesium ion

Review: Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	atomic number minus rounded atomic mass	atomic number
Ion	atomic number	atomic number minus rounded atomic mass	atomic number minus ionic charge

			p	n	e
11NaSodium23.0	+	Na	11	23-11 = 12	11
		Na^{+}	11	23-11 $=12$	$11-(+1)=10$
$\begin{aligned} & 12 \quad 2 . \\ & \mathrm{Mg} \\ & \begin{array}{l} \text { Mgnosium } \\ 24.3 \end{array} \end{aligned}$		Mg	12	$24-12=12$	12
		Mg^{2+}	12	24-12=12	$12-(+2)=10$
$\begin{aligned} & 8 \\ & 0 \\ & \text { Oxygen } \\ & 16.0 \end{aligned}$$17$	2-	\bigcirc	8	$16-8=8$	8
		O2-	8	$16-8=8$	$8-(-2)=10$

How come so many of the ions have the same number of electrons? What is an ion, anyways?

Achieving Stability Through Nobility

Activity:

1. Draw the Bohr model for one of the following ions.
\mathbf{N}^{3-}
O^{2-}
F-
$\mathbf{N a}^{+}$
$\mathbf{M g}{ }^{\mathbf{2 +}}$
$\mathrm{Al}^{\mathbf{3 +}}$
2. Compare your Bohr model with other students in the class. What do they have in common? What is different?

Achieving Stability Through Nobility

2. Compare the Bohr models. What do they have in common? What is different?

Achieving Stability Through Nobility

- The valence shell is the outermost shell containing electrons. Electrons in this shell are called valence electrons.
- A stable atom has a full valence shell.

Achieving Stability Through Nobility

Achieving Stability Through Nobility

- Atoms form compounds to have a full valence shell.
- Ionic compound: atoms gain or lose electrons
- Covalent compound: atoms share electrons

Achieving Stability Through Nobility

Atoms form ions to have a full valence shell, just like the noble gases have.

Achieving Stability Through Nobility

Alkali metals and halogens extremely reactive: only 1 electron away from full valence shell.

Alkaline earth metals and Group 16 elements very reactive: 2 electrons away.

Noble gases non-reactive.

Achieving Stability Through Nobility

HELIUM WALKS INTO A BAR. bartender says, "We don't serve NOBLE GASES HERE."

He does not react.

Valence shells can also be used to explain reactivity.

Alkali metals and halogens extremely reactive: only 1 electron away from full valence shell.

Alkaline earth metals and Group 16 elements very reactive: 2 electrons away.

Noble gases non-reactive.

Ionic Compound Formation

Ionic Compound Formation

- Atoms form ions to have a full valence shell, just like the noble gases have.
- Electrons are negatively charged. When electrons are added or taken away, atoms become positively or negatively charged ions.
- Cation: positively charged ion (e.g. $\mathrm{Ca}^{2+}, \mathrm{Cr}^{3+}, \mathrm{NH}_{4}^{+}$); forms when electrons are lost from an atom
- Anion: negatively charged ion (e.g. $\mathrm{N}^{3-}, \mathrm{S}^{2-}, \mathrm{PO}_{4}{ }^{3-}$); forms when electrons are gained by an atom

```
Note: }\mp@subsup{\textrm{NH}}{4}{+}\mathrm{ and }\mp@subsup{\textrm{PO}}{4}{}\mp@subsup{}{}{3-}\mathrm{ are polyatomic ions
    because they consist of multiple ("poly-")
        atoms("-atomic").
```

Ionic Compound Formation
CATIONs: positive ions, protons $>\underline{\text { electrons }}$
cats are HAPPY.

AnIons: negative ions, protons < electrons
(onion) (onion)

Onions make you cry (negative).

Ionic Compound Formation

- Atoms are neutral because \#protons = \#electrons.
- Nitrogen atom becomes an ion when it gains 3 electrons.
nitrogen atom (neutral)

nitrogen ion (3-charge)

Ionic Compound Formation (NaCl)

- Ionic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a non-metal.

sodium atom (neutral)

chlorine atom (neutral)

In order to get full valence shells:

- Na needs to lose 1 electron.
- Cl needs to gain 1 electron.

Ionic Compound Formation (NaCl)

- lonic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a non-metal.

This ionic compound is NaCl (sodium chloride). It has one Na^{+}ion and one Cl^{-}ion.

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

- Ionic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a non-metal.

lithium atom (neutral)

oxygen atom (neutral)
- Li needs to lose 1 electron.
- O needs to gain 2 electrons.

Problem: Electron numbers not balanced.

Solution: The compound needs two lithium ionss!

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

lithium atom (neutral)

oxygen atom (neutral)

lithium atom (neutral)

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

This ionic compound is $\mathbf{L i}_{\mathbf{2}} \mathbf{O}$ (lithium oxide). It has two Li^{+}ions and one O^{2-} ion.

Subscripts

I

Subscripts in Chemical Compounds

- Subscripts are small numbers written on the bottom right of an element or ion to show how many are in that compound.
- No subscript means there is only one of that element or ion.
- A subscript outside a bracket indicates multiples of a polyatomic ion (multiply subscripts!).

Subscripts in Chemical Compounds

Subscripts in Chemical Compounds

Practice!

Chemical Fo
$\mathrm{Co}_{2} \mathrm{~S}_{3}$
PF_{4}
MgBr_{2}
$\mathrm{Be}_{3} \mathrm{~N}_{2}$

Chemical Formula | How Many |
| :--- |
| Atoms? |

$\mathrm{H}_{2} \mathrm{O}$
CCl_{4}

CaCO_{3}

NaOH

Bohr Models of Ionic Compounds

Bohr Models of Ionic Compounds

1. Determine how many of each ion is in the compound, from the subscripts.
2. Use the periodic table to find the ionic charge of each ion.
3. Draw the Bohr models of all the ions in the compound. (They should all have full valence shells.)

Practice:
a) MgCl_{2}
b) $\mathrm{Li}_{3} \mathrm{~N}$

Covalent Compound Formation

- Covalent compounds form when two (or more) non-metal atoms share electrons.

This covalent compound is $\mathbf{H}_{\mathbf{2}} \mathbf{O}$
(water or
dihydrogen
monoxide). It has
two hydrogen
atoms and one
oxygen atom.

(These electrons are not in the valence shell. This is nota lone pair.)

Lone pair: pair of valence electrons that is not shared between atoms

Bonding pair: shared pair of valence electrons in a covalent compound

Covalent Compound Formation

- Covalent compounds form when two (or more) non-metal atoms share electrons.

Introducing Lewis Structures

Bohr Model

- All electrons
- All energy shells
- Shows protons and neutrons
- Shows a lot of information, but is clunky and time-consuming

Lewis Structure

- Only valence electrons (except cations)
- Outermost shell only
- Protons and neutrons ignored
- Good at determining bonding in a covalent compound

Introducing Lewis Structures

	Bohr Model	Lewis Structure
Atom		
Ionic Compound		(not testable) $[\mathrm{Na}]^{1+}\left[: \bullet \bigodot_{\bullet \bullet}^{\bullet} \mid:\right]^{1-}$
Covalent Compound		$: \ddot{O}=C=\ddot{\bigcirc}:$

Lewis Structures of Atoms

1. Write element symbol (capitalization matters!)
2. Draw valence electrons around, using the same positions as the Bohr model (i.e. clockwise, unpaired at first then paired)

Practice: Draw the Lewis structures of:
a) Mg atom
Mg.
c) H atom
b) N atom

d) F atom
\dot{H}
$\ddot{\mathrm{F}}:$

What is a fast way to figure out the number of valence electrons in an atom?

Lewis Structures of Atoms

Valence Electrons in Each

Lewis Structures of Covalent Compounds

Rule 1: All electrons (from the bonded atoms) must be used.
Rule 2: All atoms must have a full valence shell.

1. Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Lewis Structures of Covalent Compounds

Rule 1: All electrons (from the bonded atoms) must be used. Rule 2: All atoms must have a full valence shell.

Example: $\mathrm{H}_{2} \mathrm{O}$

1. Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Lewis Structures of Covalent Compounds

Rule 1: All electrons (from the bonded atoms) must be used. Rule 2: All atoms must have a full valence shell.

Example: NH_{3}

1. Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Each H needs 1 bond; N needs 3 bonds.
Total e=8

Lewis Structures of Covalent Compounds

Rule 1: All electrons (from the bonded atoms) must be used. Rule 2: All atoms must have a full valence shell.

Example: CO_{2}

1. Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

C needs 4 bonds; each O needs 2 bonds.
Total e $=16$
This is a double bond. It represents two bonding pairs of electrons.

Lewis Structures of Covalent Compounds

Try drawing the following covalent compounds!

- HF
- PF_{3}
- CH_{4}
- $\mathrm{N}_{2}{ }^{\text {* }}$
- $\mathrm{CH}_{2} \mathrm{O}$
- $\mathrm{CO}_{2} \mathrm{H}_{4}$ (challenge)
*Technically, N_{2} is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

Lewis Structures of Covalent Compounds

Try drawing the following covalent compounds!

$H-\ddot{F}$:	HF (3 lone pairs; 1 bonding pair)	$\ddot{N} \equiv \ddot{N}$	N_{2} * (2 lone pairs; 3 bonding pairs)
	PF_{3} (10 lone pairs; 3 bonding pairs)		$\mathrm{CH}_{2} \mathrm{O}$ (2 lone pairs; 4 bonding pairs)
	CH_{4} (0 lone pairs; 4 bonding pairs)		$\mathrm{CO}_{2} \mathrm{H}_{4}$ (challenge) (4 lone pairs; 6 bonding pairs)

*Technically, N_{2} is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

Revisiting Diatomic Elements

- When in their elemental (i.e. not in a compound) form, these elements exist as diatomic molecules: two atoms bonding covalently to fill their valence shells.
- Must memorize!

Revisiting Diatomic Elements

Memory aids:

- HIBrONClF
- HOFBrINCl

- I Have $\underline{\text { No Bright }} \underline{\text { Or }}$ Clever Friends

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103

- Have No Fear Of Ice Cold Beer
- I Bring Cookies For Our New Home
...or make your own!

$\mathrm{H}_{2} \rightarrow$ Hydrogen	Have
$\mathbf{N}_{2} \rightarrow$ Nitrogen	
$\mathrm{F}_{2} \rightarrow$ Fluorine	No
$\mathbf{O}_{2} \rightarrow$ Oxygen	-
$\mathrm{I}_{2} \rightarrow$ Iodine	
$\mathrm{Cl}_{2} \rightarrow$ Chlorine	
$\mathrm{Br}_{2} \rightarrow$ Bromine	Of
	Ice
	Cold
Beer	

Identifying Elements, Ionic Compounds, Covalent Compounds

- Ionic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a non-metal.
- Covalent compounds form when two (or more) non-metal atoms share electrons.

Identifying Elements, Ionic Compounds, Covalent Compounds

In Science 9 and 10, you can use the following flowchart to tell apart elements and compounds.
(Note: in nature, many covalent compounds with $3+$ elements exist; but we will not learn how to name them.)

Identifying Elements, Ionic Compounds, Covalent Compounds

Chemical	What is it?	chemical	what is it?
PF_{3}		NO_{2}	
CaCl_{2}		Br_{2}	
Cl_{2}	NaOH		
TiO		CCl_{4}	
Al		MgBr_{2}	

Reference

Non-metal Element	"-ide" Ending
\mathbf{N}, nitrogen	
\mathbf{O}, oxygen	
F, fluorine	
P, phosphorus	
S, sulfur	
CI, chlorine	

Non-metal Element	$\begin{aligned} & \text { "-ide" } \\ & \text { Ending } \end{aligned}$	Arabic Numeral	Roman Numeral	Prefix
		1	I	mono
Se, selenium			II	di
$\mathbf{B r}$, bromine		3	III	tri
		4	IV	tetra
I, iodine		5	V	penta
As, arsenic *		6	VI	hexa
		7	VII	hepta
Te, tellurium *		8	VIII	octa
At, astatine *		9	IX	nona
		10	X	deca

Chemical Nomenclature (Naming)

- It is important to have one system to name chemical compounds. Why?
- Scientists can communicate with each other and the public, even in different languages
- Every compound has a unique name
- Information/records are accurate and consistent
- IUPAC (International Union of Pure and Applied Chemistry) came up with a naming scheme that is used around the world.

Different Types of lons

Different Types of Ions

Monovalention:

- Can only make one ion (see periodic table)
- Cations: write name of element
- Anions: write name of element with "-ide" ending

Examples:

- Sodium ion $=\mathrm{Na}^{+}$
- Yttrium ion $=Y^{3+}$
- Bromide ion $=\mathrm{Br}^{-}$
- Oxide ion $=\mathrm{O}^{2-}$

Different Types of Ions

Multivalent Ion:

- An element that can make multiple possible ions (see periodic table)
- Metals only
- Must specify charge with Roman numerals

Examples:

- manganese(III) $=\mathrm{Mn}^{3+}$
- manganese(IV) $=\mathrm{Mn}^{4+}$
- copper $(\mathrm{I})=\mathrm{Cu}^{+}$
- $\operatorname{vanadium}(\mathrm{V})=\mathrm{V}^{5+}$

Note: manganese and magnesium аге different elements!

Different Types of Ions

Polyatomic ion:

- Group of non-metal atoms covalently bonded with an ionic charge
- Spelling counts!!! (Copy from table)

Examples:

- $\mathrm{NH}_{4}{ }^{+}=$ammonium ion
- $\mathrm{PO}_{4}{ }^{3-}=$ phosphate ion
- $\mathrm{PO}_{3}{ }^{3-}=$ phosphite ion

Polyatomic lons

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions	Negative Ions	
$\mathrm{NH}_{4}{ }^{+}$Ammonium	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Acetate
	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate
	$\mathrm{ClO}_{3}{ }^{-}$	Chlorate
	$\mathrm{ClO}_{2}{ }^{-}$	Chlorite
	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
	CN^{-}	Cyanide
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Dichromate	
$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate, bicarbonate	
HSO_{4}^{-}	Hydrogen sulfate, bisulfate	
	HS^{-}	Hydrogen sulfide, bisulfide

| Positive Ions | Negative Ions | |
| :---: | :---: | :--- | :--- |
| | $\mathrm{HSO}_{3}{ }^{-}$ | Hydrogen sulfite, bisulfite |
| | OH^{-} | Hydroxide |
| | ClO^{-} | Hypochlorite |
| | $\mathrm{NO}_{3}{ }^{-}$ | Nitrate |
| | $\mathrm{NO}_{2}{ }^{-}$ | Nitrite |
| | ClO_{4}^{-} | Perchlorate |
| | MnO_{4}^{-} | Permanganate |
| | $\mathrm{PO}_{4}{ }^{3-}$ | Phosphate |
| | $\mathrm{PO}_{3}{ }^{3-}$ | Phosphite |
| | $\mathrm{SO}_{4}{ }^{2-}$ | Sulfate |
| | $\mathrm{SO}_{3}{ }^{2-}$ | Sulfite |

Polyatomic Ions

"hydroxide" or "OH-" is made of an oxygen and hydrogen atom bonded together. Altogether, the structure has a charge of 1 -.
e.g. sodium hydroxide: NaOH
"phosphate" or " $\mathrm{PO}_{4}{ }^{3-\mu}$ is made of one phosphorus atom and four oxygen atoms bonded together.
Altogether, the structure has a charge of 3-.
e.g. sodium phosphate: $\mathrm{Na}_{3} \mathrm{PO}_{4}$ chromium(II) phosphate: $\mathrm{Cr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Polyatomic lons

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts.
Chemical Formula
A subscript outside a bracket applies to the
entire polyatomic ion insidd the bracket.

Simplified Model

Polyatomic Ions

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts. Treat polyatomic ions as single entities when naming, incl. counting atoms.

Chemical Formula	Cation	Anion	Atom Count
$\mathbf{N a O H}$	$\mathrm{Na}^{+} \times 1$	$\mathrm{OH}^{-} \times 1$	$\mathrm{Na}: 1 \mathrm{O}: 1$
$\mathrm{H}: 1$			
$\mathbf{M g}(\mathbf{O H})_{\mathbf{2}}$	$\mathrm{Mg}^{2+} \times 1$	$\mathrm{OH}^{-} \times 2$	$\mathrm{Mg}: 1 \mathrm{O}: 2$
$\mathrm{H}: 1$			
$\mathbf{B e}_{\mathbf{3}}\left(\mathbf{P O}_{\mathbf{4}}\right)_{\mathbf{2}}$			
$\mathbf{T i}_{\mathbf{2}}\left(\mathbf{C r O}_{\mathbf{4}}\right)_{\mathbf{3}}$			
$\left(\mathbf{N H}_{\mathbf{4}} \mathbf{2}_{\mathbf{2}} \mathbf{C r}_{\mathbf{2}} \mathbf{O}_{\mathbf{7}}\right.$			

Naming Ionic Compounds

Intro to Ionic Compound Nomenclature

Cation comes first; anion comes second.
Names of ionic compounds tell you which ions are in the compound.
e.g. "sodium chloride" has Na^{+}and Cl^{-}ions.
e.g. "titanium(IV) dichromate" has Ti^{4+} and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ions.

Chemical formulae tell you how many of each ion are in the compound, using subscripts.

$$
\text { e.g. " } \mathrm{CaCl}_{2} \text { " has } 1 \mathrm{Ca}^{2+} \text { ion and } 2 \mathrm{Cl}^{\text {- ions. }}
$$

e.g. " $\mathrm{Mn}(\mathrm{OH})_{2}$ " has $1 \mathrm{Mn}^{4+}$ ion and $2 \mathrm{OH}^{-}$ions.

Intro to Ionic Compound Nomenclature

To write the name or formula of a compound, you must sometimes find out which ions are involved, through charge balancing.

Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges.

Naming lonic Compounds

1. Write the cation, first.
2. Write the anion with "-ide" ending.

Chemical Formula	Periodic Table			Name
NaCl	11 Na Sodium 23.0	17 CI Chooine 35.5		sodium chloride
$\mathbf{M g B r} 2$	$\begin{aligned} & 12 \\ & \mathbf{N g} \\ & \begin{array}{c} \text { Magnesum } \\ 24.3 \\ 24 \end{array} \end{aligned}$	35 Br Bromine 79.9		magnesium bromide

Naming lonic Compounds

1. Write the cation, first.
2. Write the anion with "-ide" ending.

Chemical Formula

Ch no! Chromium is multivalent: it has multiple possible ionic charges. Ta find out the charge on the chromium
ion, we need to do charge balancing.
$\mathrm{Cr}_{2} \mathrm{O}_{3}$

CrO

24 3+	8
Cr ${ }^{2+}$	0
Chromium	Oxygen
52.0	16.0

???
???

Naming Ionic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
2. Write the anion with "-ide" ending.

Charge Balancing Part 1: Determining Charges of Multivalent Metals

$\mathrm{Cr}_{2} \mathrm{O}_{3}$:

24 3+
 Cr 2+
 Chromium
 52.0

1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
2) The total number of positive charges in an ionic compound must equal the total number

Total: 6 negative charges. Must have 6 of negative charges.
Determine the charge on the metal ion.

We know there are 2 chromium ions and 3 axygen ions from the subscripts in the formula.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

Charge Balancing Part 1: Determining Charges of Multivalent Metals

CrO:

| 24 $3+$
 Cr $2+$
 Chromium
 52.0 |
| :--- | :--- |
| 8 $2-$
 \mathbf{O}
 Oxygen
 16.0 |

| 1) Write out all the ions you have. Leave the
 charge blank on the multivalent metal. | Cr ? O^{2-}We know there is I chromium
 ion and l oxygen ion from the
 subscripts in the formula. |
| :--- | :--- | :--- |
| 2) The total number of positive charges in an
 ionic compound must equal the total number
 of negative charges.
 Determine the charge on the metal ion. | Total: 2 negative charges. Must have 2
 positive to balance the charges.
 Divide by \# of chromium ions (1). Therefore,
 each Cr ion must have a 2+ charge. |
| 3) Write the compound name. Specify the ion
 charge on the multivalent metal using brackets
 and Roman numerals. | chromium(II) oxide |

Naming Ionic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
If the cation is polyatomic, write it exactly the way it is written in the table.
2. Write the anion with "-ide" ending (unless it is polyatomic.)

Polyatomic lons

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions	Negative Ions	
$\mathrm{NH}_{4}{ }^{+}$Ammonium	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Acetate
	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate
	$\mathrm{ClO}_{3}{ }^{-}$	Chlorate
	$\mathrm{ClO}_{2}{ }^{-}$	Chlorite
	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
	CN^{-}	Cyanide
	$\mathrm{CrO}_{2}{ }^{2-}$	Dichromate
$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate, bicarbonate	
HSO_{4}^{-}	Hydrogen sulfate, bisulfate	
	HS^{-}	Hydrogen sulfide, bisulfide

| Positive Ions | Negative Ions | |
| :---: | :---: | :--- | :--- |
| | $\mathrm{HSO}_{3}{ }^{-}$ | Hydrogen sulfite, bisulfite |
| | OH^{-} | Hydroxide |
| | ClO^{-} | Hypochlorite |
| | $\mathrm{NO}_{3}{ }^{-}$ | Nitrate |
| | $\mathrm{NO}_{2}{ }^{-}$ | Nitrite |
| | ClO_{4}^{-} | Perchlorate |
| | MnO_{4}^{-} | Permanganate |
| | $\mathrm{PO}_{4}{ }^{3-}$ | Phosphate |
| | $\mathrm{PO}_{3}{ }^{3-}$ | Phosphite |
| | $\mathrm{SO}_{4}{ }^{2-}$ | Sulfate |
| | $\mathrm{SO}_{3}{ }^{2-}$ | Sulfite |

Polyatomic lons

Polyatomic ions: ions made of multiple atoms bonded covalently together. They have special names.

"phosphate" or " $\mathrm{PO}_{4}{ }^{3-1}$ is made of one phosphorus atom and four oxygen atoms bonded together. Altogether, the structure has a charge of 3-.
e.g. sodium phosphate: $\mathrm{Na}_{3} \mathrm{PO}_{4}$ chromium(II) phosphate: $\mathrm{Cr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Polyatomic lons

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts.

Polyatomic Ions

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts. Treat polyatomic ions as single entities when naming, incl. counting atoms.

Chemical Formula	Cation	Anion	Atom Count	
$\mathbf{N a O H}$	Na^{+}	OH^{-}	$\mathrm{Na}: 1 \mathrm{O}: 1 \quad \mathrm{H}: 1$	
$\mathbf{M g}(\mathbf{O H})_{\mathbf{2}}$	Mg^{2+}	$\mathrm{OH}^{-} \times 2$	$\mathrm{Mg}: 1 \mathrm{O}: 2 \quad \mathrm{H}: 1$	
$\mathbf{B e}_{\mathbf{3}}\left(\mathbf{P O}_{\mathbf{4}}\right)_{\mathbf{2}}$	$\mathrm{Be}^{2+} \times 3$	$\mathrm{PO}_{4}^{2-} \times 2$	$\mathrm{Be}: 3 \mathrm{P}: 2 \quad \mathrm{O}: 8$	
$\mathbf{T i}_{\mathbf{2}}\left(\mathbf{C r O}_{\mathbf{4}}\right)_{\mathbf{3}}$	$\mathrm{Ti}^{3+} \times 2$	$\mathrm{CrO}_{4}{ }^{2-} \times 3$	$\mathrm{Ti}: 2 \quad \mathrm{Cr}: 3$	$\mathrm{O}: 12$

Rules for Naming Ionic Compounds (FINAL)

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
If the cation is polyatomic, write it exactly the way it is written in the table.
2. Write the anion with "-ide" ending (unless it is polyatomic.)

Naming with Polyatomic lons: Examples

Chemical Formula	Periodic Table		Name
$\mathrm{Mg}(\mathrm{OH})_{2}$	12 $2+$ HSO_{3}^{-} Hydro $\mathbf{M g}$ Magnesium OH^{-} Hydro 24.3 ClO^{-} Hypooc	sulfite, bisulfite ite	magnesium hydroxide
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$	Positive Ions $\mathrm{NH}_{4}{ }^{+}$Ammonium		ammonium sulfide

Naming with Polyatomic lons: Examples

Chemical Formula	Periodic Table	Name
$\mathrm{Sc}\left(\mathrm{HSO}_{3}\right)_{3}$		1. scandium hydrogen sulfite OR 2. scandium bisulfite seandium hydrogen sulfite, bisulfite

Naming with Polyatomic lons: Examples

22	$4+$
Ti	
Titanium	
47.9	

$\mathrm{ClO}_{2}{ }^{-}$	Chlorite
$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
CN^{-}	Cvanide

$\mathrm{Ti}_{2}\left(\mathrm{CrO}_{4}\right)_{3}:$

1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	$\begin{array}{ll} \mathrm{Ti}^{?} & \mathrm{CrO}_{4}^{2-} \\ \mathrm{Ti} ? & \mathrm{CrO}_{4}^{2-} \end{array}$
2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 6 negative charges. Must have 6 positive to balance the charges. Divide by \# of titanium ions (2). Therefore, each Ti ion must have a 3+ charge.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals. Spell the polyatomic ion exactly as it is spelled in the reference sheet.	titanium(III) chromate

Writing Formulas of Ionic Compounds

Intro to Ionic Compound Nomenclature

Names of ionic compounds tell you which ions are in the compound. The cation comes first; the anion comes second.
To write a chemical formula of an ionic compound, you must find out how many of each ion is involved, through charge balancing.

[^0]
Writing Formulas of Ionic Compounds (v1)

1. Write down each ion with its charge.
2. Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
3. Write your formula with subscripts.

To indicate more than one of a polyatomic ion, use brackets with the subscript outside.

Writing Chemical Formulas: Examples (v1)

$20 \quad 2+$
$\mathbf{C a}$
Calcium
40.1

$15 \quad 3-$
\mathbf{P}
Phosphorus
31.0

calcium phosphide

1) Write down each ion with its charge.	$\begin{array}{ll} \mathrm{Ca}^{2+} & \mathrm{P}^{3-} \\ \mathrm{Ca}^{2+} & \mathrm{P}^{3-} \end{array}$
2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.	
3) Write your formula with subscripts.	

Writing Chemical Formulas: Examples (v1)

| 24 $3+$
 Cr $2+$
 Chromium
 52.0 |
| :--- | :--- |
| |

$\mathrm{HSO}_{3}{ }^{-} \quad$ Hydrogen sulf
$\mathrm{OH}^{-} \quad$ Hydroxide
ClO^{-}Hypochlorite

chromium(II) hydroxide

1) Write down each ion with its charge.
2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
3) Write your formula with subscripts.

Cr^{2+}
 OH^{-}

OH^{-}
$\mathrm{Cr}(\mathrm{OH})_{2}$

Writing Formulas of Ionic Compounds (v2)

1. Write down each ion with its charge.
2. Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.
3. Reduce the subscripts if both divisible by the same number.

Writing Chemical Formulas: Examples (v2)

$20 \quad 2+$
$\mathbf{C a}$
Calcium
40.1

$15 \quad 3-$
\mathbf{P}
Phosphorus
31.0

calcium phosphide

1) Write down each ion with its charge.
2) Write the chemical formula by writing the cation first and the anion second.
Then, "criss-cross" the charges to become the subscripts.

3) Reduce the subscripts if both divisible by the same number.

Writing Chemical Formulas: Examples (v2)

$\begin{array}{ll}24 & 3+ \\ \mathrm{Cr} & 2+\end{array}$
Chromium
52.0

$\mathrm{HSO}_{3}-$	Hydrogen sulf
OH^{-}	Hydroxide
ClO^{-}	Hypochlorite

chromium(II) hydroxide

1) Write down each ion with its charge.
2) Write the chemical formula by writing the cation first and the anion second.
Then, "criss-cross" the charges to become the subscripts.
3) Reduce the subscripts if both divisible by the same number.

1 and 2 do not have a common factor. Therefore, $\mathbf{C r}(\mathbf{O H})_{\mathbf{2}}$ is our final answer.

Writing Chemical Formulas: Examples (v2)

Writing Chemical Formulas: Examples (v2)

25	$2+$
Mn	$3+$
Manganese	
54.9	
54	

$\mathrm{PO}_{3}{ }^{3-} \quad$ Phosphite
$\mathrm{SO}_{4}{ }^{2-} \quad$ Sulfate
$\mathrm{SO}_{3}{ }^{2-} \quad$ Sulfite

manganese(IV) sulfate

1) Write down each ion with its charge.
2) Write the chemical formula by writing the cation first and the anion second.
Then, "criss-cross" the charges to become the subscripts.
3) Reduce the subscripts if both divisible by the same number.

4 and 2 are both divisible by 2 . Rewrite formula as $\mathbf{M n}\left(\mathbf{S O}_{\mathbf{4}}\right)_{\mathbf{2}}$.

Naming and Writing Formulas: Covalent Compounds

Naming Binary Covalent Compounds

- Binary covalent compound: a covalent compound containing only two element
- Names and formulas of covalent compounds both tell you:
- Which elements
- How many atoms of each element

Naming Binary Covalent Compounds

1. Write the first element.
2. Write the second element with "-ide" ending.
3. Add prefixes to show how many of each element there is.

- Do not add "mono-" to first element.
- If adding "mono-" to "-oxide", write "monoxide" instead.
e.g. $\mathrm{O}_{2} \mathrm{~F}_{2}$ dioxygen difluoride
e.g. PF_{3}
e.g. $\mathbf{N}_{2} \mathrm{O}$
phosphorus trifluoride
dinitrogen monoxide

Note: All compound
names (covalent and ionic) are lowercase.

Naming Binary Covalent Compounds

Covalent compounds with special names (must memorize):

$$
\begin{gathered}
\mathrm{NH}_{4}=\text { ammonia } \longleftarrow \\
\mathrm{H}_{2} \mathrm{O}=\text { water } \\
\mathrm{CH}_{4}=\text { methane }
\end{gathered}
$$

NH_{4}^{+}(ammonium ion)
and NH_{4} (ammonia)
are not the same!!!

- Chemical Formulas of Binary Covalent Compounds

1. Identify the elements involved. Write their symbols.
2. Use the prefixes to determine the number of each element in the compound. Write as subscripts.
e.g. tetraphosphorus pentaoxide $\mathrm{P}_{4} \mathrm{O}_{5}$
e.g. nitrogen triiodide
NI_{3}
e.g. xenon hexafluoride $X e F_{6}$

More Practice: Binary Covalent Compounds

Chemical Formula

Compound Name

CO_{2}
CO
CCl_{4}
$\mathrm{P}_{4} \mathrm{O}_{5}$
diphosphorus pentaoxide
xenon hexafluoride

Fruit Tart Case Study

You are making fruit tarts for a party. Unfortunately, after you are finished, you see an Instagram picture that makes you want to rearrange your fruit tarts. You need 3 finished raspberry/blackberry tarts in total. How many of each tart will you start with? What will you be left with?

Fruit Tart Case Study

You are making fruit tarts for a party. Unfortunately, after you are finished, you see an Instagram picture that makes you want to rearrange your fruit tarts. You need 3 finished raspberry/blackberry tarts in total. How many of each tart will you start with? What will you be left with?

6 raspberries each

1 blackberry each

2 raspberries + 1 blackberry each

fruitless tart

Fruit Tart Case Study

$\underline{1} \mathrm{Rb}_{6} \mathrm{~T}+\underline{3} \mathrm{BbT} \rightarrow \underline{3} \mathrm{Rb}_{2} \mathrm{BbT}+\underline{1} \mathrm{~T}$

Legend

$\mathbf{R b}=$ "raspberry" element
Bb = "blackberry" element T = "tart" element

Follow-up: Now, suppose that you need 12 tarts instead of 3. How many raspberry and blackberry tarts do you start with?

Balancing Chemical Equations

Why balance?

- Chemical "recipes": how much do you put in? how much do you expect to yield?
- Conservation of mass: no atoms are ever created or destroyed

Balancing Chemical Equations: Vocabulary

Balancing chemical formulas involves adding coefficients in front of elements and compounds until the total atoms in the reactants equals the products.

coefficients

(balancing numbers)

Balancing Chemical Equations: Vocabulary

Balancing chemical formulas involves adding coefficients in front of elements and compounds until the total atoms in the reactants equals the products.

- Element: made of one type of atom
- Compound: made of two or more types of atoms

$\mathrm{Zn}+\mathbf{2 H C l} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Balancing Chemical Equations: Vocabulary

Balancing chemical formulas involves adding coefficients in front of elements and compounds until the total number of atoms of each element in the reactants equals the products.

Reactants: what goes into the reaction
$\mathbf{Z n}+\mathbf{2 H C l} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Balancing Chemical Equations: Tips

- Goal: the number of atoms of each element in the reactants equals the products. Guess and check until this happens!
- Remember your diatomic elements: $\mathbf{H}, \mathbf{I}, \mathbf{B r}, \mathbf{O}, \mathbf{N}, \mathbf{C l}, \mathbf{F}$
- Balance atoms in compounds first. Save elements for last.
- If the same polyatomic ion appears in the reactants and products, you can often treat it as a group of atoms instead of splitting it up.
- At the end, reduce all coefficients to lowest whole-number terms.

Note: balancing can be frustrating at first. Practice, practice, practice!

Balancing Examples (easy)

1. __ $\mathrm{N}_{2}+\underline{3} \mathrm{H}_{2} \rightarrow \underline{2} \mathrm{NH}_{3}$

Note: Do not write a coefficient if there is only "1" of that element or compound.
2. $2 \underset{\sim}{2} \mathrm{NaCl}+\ldots \mathrm{F}_{2} \rightarrow \underline{2} \mathrm{NaF}+\ldots \mathrm{Cl}_{2}$
3. $4 \underline{P}+\underline{5} \mathrm{O}_{2} \rightarrow \underline{2} \mathrm{P}_{2} \mathrm{O}_{5}$
4. $2 \mathrm{Ag}_{2} \mathrm{O} \rightarrow$ 4 $\mathrm{Ag}+\ldots \mathrm{O}_{2}$

Treat polyatomic ions as groups if they appear in reactants and products (e.g. \#2 \& \#3 but not \#5)
5. $2 \underset{\sim}{2} \mathrm{NaBr}+\ldots \mathrm{CaF}_{2} \rightarrow \underline{2} \mathrm{NaF}+\ldots \mathrm{CaBr}_{2}$
6. $\ldots \mathrm{FeCl}_{3}+3 \mathrm{NaOH} \rightarrow \ldots \mathrm{Fe}(\mathrm{OH})_{3}+\underline{3} \mathrm{NaCl}$
7. $ـ \mathrm{H}_{2} \mathrm{SO}_{4}+\underline{2} \mathrm{NaNO}_{2} \rightarrow \underline{2} \mathrm{HNO}_{2}+\ldots \mathrm{Na}_{2} \mathrm{SO}_{4}$
8. $6 \underline{6} \mathrm{CO}_{2}+\underline{6} \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\underline{6} \mathrm{O}_{2}$
9. $\underline{2} \mathrm{HCl}+\ldots \mathrm{CaCO}_{3} \rightarrow \ldots \mathrm{CaCl}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{CO}_{2}$

Balancing Examples (hard)

10. $\quad \mathrm{C}_{3} \mathrm{H}_{8}+\underline{5} \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+\underline{4} \mathrm{H}_{2} \mathrm{O}$
11. $\underline{2} \mathrm{C}_{6} \mathrm{H}_{14}+\underline{19} \mathrm{O}_{2} \rightarrow \underline{12} \mathrm{CO}_{2}+\underline{14} \mathrm{H}_{2} \mathrm{O}$

Make sure to balance the element $\left(\mathrm{O}_{2}\right)$ last!
12. $\underline{2} \mathrm{C}_{8} \mathrm{H}_{18}+\underline{25} \mathrm{O}_{2} \rightarrow \underline{16} \mathrm{CO}_{2}+\underline{18} \mathrm{H}_{2} \mathrm{O}$

Trick for Combustion Reactions (e.g. \#10-12)

1. Balance every atom except oxygen.

$$
\ldots \mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \underline{6} \mathrm{CO}_{2}+\underline{7} \mathrm{H}_{2} \mathrm{O}
$$

2. Find out how many oxygen atoms you need the _ O_{2} to contribute. Divide that number by 2. This is your temporary coefficient for O_{2}.

$$
-\mathrm{C}_{6} \mathrm{H}_{14}+\underline{\frac{19}{2}} \mathrm{O}_{2} \rightarrow \underline{6} \mathrm{CO}_{2}+\underline{7} \mathrm{H}_{2} \mathrm{O}
$$

$6 \mathrm{CO}_{2}$ has 12 oxygen atoms. $7 \mathrm{H}_{2} \mathrm{O}$ has 7 oxygen atoms. In total, there are 19 oxygen atoms in the products.
3. You are not allowed to have fractional coefficients in your final answer. Multiply all the coefficients by 2.

$$
\underline{2} \mathrm{C}_{6} \mathrm{H}_{14}+\underline{19} \mathrm{O}_{2} \rightarrow \underline{12} \mathrm{CO}_{2}+\underline{14} \mathrm{H}_{2} \mathrm{O}
$$

Resources

- Naming and Writing Chemical Formulas
- Mr. Carman's Blog (generates quizzes) https://www.kentschools.net/ccarman/cp-chemistry/practice-quizzes/compound-naming/
- Mr. Eisley (list of other resources to practice http://www.mreisley.com/nomenclature-practice.html
- ChemFiesta (worksheets with answers)
https://chemfiesta.org/2015/01/13/naming-worksheets/
- Balancing Chemical Equations
- TemplateLAB (explanations and many worksheets with answers) https://templatelab.com/balancing-equations-worksheet/

Practice

Classify as ionic or covalent. Then, name the following compounds:

Formula	Name
CO_{2}	
$\mathrm{Na}_{2} \mathrm{O}$	
CrF_{3}	
$\mathrm{~N}_{2} \mathrm{Br}_{3}$	
MnO_{2}	

Try to classify as ionic or covalent. How are these compounds different from what we have seen so far?

Formula	Name
MgCO_{3}	magnesium carbonate
$\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$	calcium acetate
$\mathrm{NH}_{4} \mathrm{Br}$	ammonium bromide
KCN	potassium cyanide

Ionic Compound Formation

Pronunciation: [kat-ahy-uh n, -on] -noun, Chemistry

1. An ion with a paws-itive charge.
2. The cutest ion ever.

[^0]: Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges.

