Chemical Compounds

Bond Formation, Nomenclature, and Modelling

Overview

Review: atoms and subatomic particles, ions
Modelling Atoms and Compounds

- Counting Atoms
- Bohr Models
- Lewis Diagrams

IUPAC Naming and Writing Formulas
Balanced Chemical Equations

Section 1: Review

 I
Review

1. Why do compounds form?
2. How do you draw the Bohr model for an atom? Ion?
3. What is a valence shell? Valence electron?
4. On the periodic table, where are the metals and nonmetals? What is the difference?
5. Which of these compounds are ionic? Covalent? What's the difference?
6. How do you name ionic compounds?

Review: Atoms and Subatomic Particles

Atom:

- Smallest unit of matter
- No electric charge (neutral)
- Examples:
- Na (sodium atom)
- O (oxygen atom)

Review: Atoms and Subatomic Particles

Proton: positively charged particle in the nucleus of an atom; has a mass of 1

Neutron: uncharged particle in the nucleus of an atom; has a mass of 1
Electron: negatively charged
particle in energy shell surrounding the nucleus of the atom; very tiny (mass of 0)

Review: Atoms and Subatomic Particles

For an atom:

- \# protons = atomic number
- \# electrons = atomic number

- \# neutrons =
rounded atomic mass - atomic number

If the tenths place is a 4 or lower, round down.	$32.1 \rightarrow 32$	$65.4 \rightarrow 65$
If the tenths place is a 5 or higher, round up.	$10.8 \rightarrow 11$	$35.5 \rightarrow 36$

Review: Atoms and Subatomic Particles

	\# protons	\# neutrons	\# electrons
atom (neutral)	atomic number	rounded atomic mass minus atomic number	atomic number

Practice: Atoms and Subatomic Particles

1) Why are the number of protons and electrons the same for an atom? (Hint: what is the charge on an atom?)
2) Explain why you need to subtract atomic number from atomic mass to calculate the number of neutrons in an atom.
3) Complete the following table.

atom	\# protons	\# neutrons	\# electrons
Ca	20	20	20
F	9	10	9
Cl	17	19	17
Ar	18	22	18
Zn	30	35	30

Review: Ions

Ion: an atom or molecule with an electric charge; formed by gaining or losing electrons

Examples:

- Na^{+}(sodium ion with $1+$ charge)
- O^{2-} (oxygen ion with 2- charge)

Review: Ions

The Periodic Table tells you which ion(s) an atom can form.

- Cation: positively charged ion (e.g. $\mathrm{Ca}^{2+}, \mathrm{Cr}^{3+}, \mathrm{NH}_{4}^{+}$); forms when electrons are lost
- Anion: negatively charged ion (e.g. $\mathrm{N}^{3-}, \mathrm{S}^{2-}, \mathrm{PO}_{4}{ }^{3-}$); forms when electrons are gained

$\mathbf{1 2 r}$	$2+$
$\mathbf{M g}$	
Magnesium	
24.3	

> magnesium atom can lose two electrons to form the Mg^{2+} ion

16	$2-$
S	
Suffur	
32.1	

> sulfur atom can gain two electrons to form the S^{2-} ion

| 10 0
 Ne
 Neon
 20.2 | 6
 \mathbf{C}
 Carbon
 12.0 |
| :--- | :--- | :--- |

carbon and neon do not form ions

Review: Ions

CATIONs: positive ions, protons $>$ electrons
Cis are HAPPY.

AnIons: negative ions, protons < electrons
(onion)
\therefore Onions make you cry (negative).

Review: Ions

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions		Negative Ions
$\mathrm{NH}_{4}{ }^{+}$Ammonium	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Acetate
	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate
	$\mathrm{ClO}_{3}{ }^{-}$	Chlorate
	$\mathrm{ClO}_{2}{ }^{-}$	Chlorite
	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
	CN^{-}	Cyanide
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Dichromate
	$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate, bicarbonate
	$\mathrm{HSO}_{4}{ }^{-}$	Hydrogen sulfate, bisulfate
	Le-	

A polyatomic ion is a group of covalently bonded atoms with a charge.
E.g. NH_{4} (nitrogen tetrahydride) can lose an electron to become NH_{4}^{+} (ammonium ion)

Review: Ions

For an ion:

- \# protons = atomic number
- \# electrons = atomic number - ion charge
- \# neutrons = rounded atomic mass - atomic number

Review: Atoms and Subatomic Particles

	\# protons	\# neutrons	\# electrons
atom (neutral)	atomic number	rounded atomic mass minus atomic number	atomic number
ion (charged)	atomic number	rounded atomic mass minus atomic number	atomic number minus ion charge

Practice: Ions

	\# protons	\# neutrons	\# electrons
Mg^{2+}	12	12	10
Ti^{3+}	22	26	19
O^{2-}	8	8	10
As^{3-}	33	42	36
phosphorus ion	15	16	18
lithium ion	3	4	2
manganese(IV) ion	25	30	21
cobalt(III) ion	27	32	24

Practice: Atoms and Ions

	\# protons	\# neutrons	\# electrons
N	7	7	7
Br	35	45	36
Zn^{2+}	30	35	28
Li	3	4	3
aluminum	13	14	13
calcium ion	20	20	18
nickel(III) ion	28	31	25
potassium	19	20	19

Practice: Atoms and Ions

3. Why do atoms and ions have the same number of protons and neutrons, but different numbers of electrons?
4. Why do ions never have the same number of protons as electrons?
5. To form an anion, does an atom have to gain or lose electrons? Why?
6. When a calcium atom becomes an ion, does it have to gain or lose electrons? How many?

Practice: Atoms and Ions

7. Is the chlorine ion a cation or an anion? Does it form by gaining or losing electrons?
8. Is Cr^{3+} a cation or anion?
9. Does arsenic form an ion by gaining or losing electrons? How many? How do you know?
10. Why do we call manganese a multivalent element? List 3 other multivalent elements.

Section 2: Modelling
 Atoms and Compounds

Modelling Atoms and Compounds

- Introduction to Chemical Compounds
- Counting Atoms
- Bohr Models of Atoms, Ionic Compounds, and Covalent Compounds
- Lewis Diagrams of Atoms, Ionic Compounds, and Covalent Compounds

Introduction to Chemical Compounds

What are compounds? Why do they form? (textbook pgs $\sim 120-124$)

Achieving Stability Through Nobility

- The valence shell is the outermost shell containing electrons. Electrons in this shell are called valence electrons.
- A stable atom has a full valence shell.

Achieving Stability Through Nobility

- The valence shell is the outermost shell containing electrons. Electrons in this shell are called valence electrons.
- A stable atom has a full valence shell.
- Atoms react to form compounds (group of atoms bonded together) to become stable by having a full valence shell.
- Ionic compound: formed when atoms gain or lose electrons
- Covalent compound: formed when atoms share electrons

Achieving Stability Through Nobility

Valence electrons can explain reactivity.

The closer an atom is to a full valence shell, the more reactive it is.

Alkali metals and halogens extremely reactive.

Alkaline earth metals and Group 16 elements very reactive.

Achieving Stability Through Nobility

HELIUM WALKS INTO A BAR. bartender says, "We don't serve NOBLE GASES HERE."

Valence electrons can explain reactivity.

Noble gases already have a full valence shell: they do not react with other elements.

He does not react.

Practice

Identify the following as atoms (pure elements), ions, or compounds.
BONUS: identify any cations, anions, and polyatomic ions.

1. Na	7. H_{2}	13.Ca(OH)	$19 \cdot \mathrm{MgO}_{2}$
2. TiCl_{3}	8. Fe	$14 \cdot \mathrm{Mn}$	$20 \cdot \mathrm{Pt}^{4+}$
3. CH_{4}	9. O^{2-}	$15 \cdot \mathrm{HSO}_{4}^{-}$	$21 \cdot \mathrm{Be}^{-}$
4. Cu	$10 \cdot \mathrm{I}_{2}$	$16 \cdot \mathrm{Cu}^{+}$	$22 \cdot \mathrm{ClO}_{2}^{-}$
5. Fe^{3+}	$11 \cdot \mathrm{Ni}(\mathrm{OH})_{3}$	$17 \cdot \mathrm{VS}_{2}$	$23 \cdot \mathrm{CCl}_{4}$
6. $\mathrm{H}_{2} \mathrm{O}$	12. Mg	$18 . \mathrm{NO}$	$24 \cdot \mathrm{Cl}_{2}$

Practice

Identify the following as atoms (pure elements), ions, or compounds.
BONUS: identify any cations, anions, and polyatomic ions.

1. Na	7. H_{2}	13. $\mathrm{Ca}(\mathrm{OH})_{2}$	19. MgO_{2}
2. TiCl_{3}	8. Fe	14.Mn	20.Pt ${ }^{4+}$
3. CH_{4}	9. O^{2-}	$15 . \mathrm{HSO}_{4}^{-}$	21.Be
4. Cu	$10 . \mathrm{I}_{2}$	16.Cu ${ }^{+}$	22. $\mathrm{ClO}_{2}{ }^{-}$
5. Fe^{3+}	11.Ni(OH) ${ }_{3}$	17.VS 2	23.CCl 4
6. $\mathrm{H}_{2} \mathrm{O}$	12.Mg	18.NO	24. Cl_{2}

Cations: $\mathrm{Fe}^{3+}, \mathrm{Cu}^{+}, \mathrm{Pt}^{4+}$. Anions: $\mathrm{O}^{2}, \mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{2}^{2}$. Polyatomic: $\mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{2}^{-}$

Counting Atoms

See "AcCounting for Atoms" worksheet and answer key.

Bohr Models

(textbook pgs ~120-124)

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the middle of diagram:

- Element symbol (e.g. "Cl" "F" "Na")
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- Electrons drawn singly starting from top and rotating clockwise

4. Ions only:

- Add square brackets and a charge

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	rounded atomic mass minus atomic number	atomic number
Ion	atomic number	rounded atomic mass minus atomic number	atomic number minus ionic charge

Atomic Number Symbol Name Atomic Mass	22 $4+$ Ti $3+$ Titanium 47.9

		p	n	e
11	Na			
Sodium	Na^{+}			
$12{ }^{2+}$				
Mg	Mg			
24.3	Mg^{2+}			
$\begin{array}{ll} 8 \\ 0^{2-} \end{array}$	O			
oxysen				
16.0	O^{2-}			
${ }_{\text {cl }}^{17}$ -	Cl			
Crume 35.5	Cl^{-}			

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number rounded atomic mass minus atomic number	atomic number	
Ion	atomic number	rounded atomic mass minus atomic number	atomic number minus ionic charge

Atomic Number Symbol Name Atomic Mass	22 $4+$ Ti $3+$ Titanium 47.9

		p	n	e
11 Na Sodium 23.0	Na	11	23-11=12	11
	Na^{+}	11	23-11=12	$11-(+1)=10$
\qquad	Mg	12	$24-12=12$	12
	Mg^{2+}	12	$24-12=12$	$12-(+2)=10$
$\begin{array}{ll} 8 & 2- \\ 0 & \\ \text { oxygen } \\ 16.0 \end{array}$	\bigcirc	8	$16-8=8$	8
	O^{2-}	8	$16-8=8$	$8-(-2)=10$
17 Cl CI Chlorine 35.5 35.5	Cl	17	36-17 $=19$	17
	Cl^{-}	17	$36-17=19$	18

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: $2,8,8,18$
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Na	11	$23-11=12$	11

Example: sodium atom

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Cl	17	$36-17=19$	17

Example: chlorine atom

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
0	8	$16-8=8$	8

Example: oxygen atom

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
O^{2-}	8	$16-8=8$	$8-(-2)=10 \quad$

Example: oxygen ion

Note: subtracting a negative is the same as adding.

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Mg^{2+}	12	$24-12=12$	$12-(+2)=10$

Example: magnesium ion

Ionic Compound Formation

Ionic Compound Formation (Review)

- Atoms form ions to have a full valence shell, just like the noble gases have.
- Electrons are negatively charged. When electrons are added or taken away, atoms become positively or negatively charged ions.
- Cation: positively charged ion (e.g. $\mathrm{Ca}^{2+}, \mathrm{Cr}^{3+}, \mathrm{NH}_{4}{ }^{+}$); forms when electrons are lost from an atom
- Anion: negatively charged ion (e.g. $\mathrm{N}^{3-}, \mathrm{S}^{2-}, \mathrm{PO}_{4}{ }^{3-}$); forms when electrons are gained by an atom

Ionic Compound Formation

- Atoms are neutral because \#protons = \#electrons.
- Nitrogen atom becomes an ion when it gains 3 electrons.

Where do these electrons come from?

Ionic Compound Formation (NaCl)

- Ionic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a non-metal.

sodium atom (neutral)

chlorine atom (neutral)

In order to get full valence shells:

- Na needs to lose 1 electron.
- Cl needs to gain 1 electron.

Ionic Compound Formation (NaCl)

- Ionic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a non-metal.

This ionic compound is NaCl (sodium chloride). It has one Na^{+}ion and one Cl^{-}ion.

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

- Ionic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a non-metal.

lithium atom (neutral)

oxygen atom (neutral)
- Li needs to lose 1 electron.
- O needs to gain 2 electrons.

Problem: Electron

numbers not balanced.
Solution: The compound needs two lithium ions!

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

lithium atom (neutral)

oxygen atom (neutral)

lithium atom (neutral)

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

This ionic compound is $\mathrm{Li}_{2} \mathrm{O}$ (lithium oxide). It has two Li^{+}ions and one O^{2-} ion.

Bohr Models of Compounds

(textbook pgs ~120-124)

Bohr Models of Ionic Compounds

1. Determine how many of each ion is in the compound, from the subscripts.
2. Use the periodic table to find the ionic charge of each ion.
3. Draw the Bohr models of all the ions in the compound. (They should all have full valence shells.)

Practice:
a) MgCl_{2}
b) $\mathrm{Li}_{3} \mathrm{~N}$

Bohr Models of Ionic Compounds

Covalent Compound Formation

- Covalent compounds form when two (or more) non-metal atoms share electrons.

This covalent compound is $\mathrm{H}_{2} \mathrm{O}$
(water or
dihydrogen
monoxide). It has
two hydrogen
atoms and one
oxygen atom.

(These electrons are not in the valence shell. This is nota lone pair.)

Lone pair: pair of valence electrons that is not shared between atams

Bonding pair: shared pair of valence electrons in a covalent compound

Covalent Compound Formation

- Covalent compounds form when two (or more) non-metal atoms share electrons.

This covalent compound is CO_{2} (carbon dioxide).
It has one carbon atom and two oxygen atoms.

Bohr Models of Covalent Compounds

1. Determine how many of each atom is in the compound, from the subscripts.
2. Draw the Bohr models of the atoms. 'Guess and check' what covalent bonds between valence electrons will cause all atoms to have a full valence shell.
3. Redraw the Bohr model, showing the covalent bonds.

Practice:
a) CH_{4}
b) N_{2}

Bohr Models of Covalent Compounds

Practice:
a) CH_{4}

Bohr Models of Covalent Compounds

Practice:
b) N_{2}

c) $\mathrm{CO}_{2} \mathrm{H}_{4}$???

Introducing Lewis Structures

Bohr Model

- All electrons
- All energy shells
- Shows protons and neutrons
- Shows a lot of information, but is clunky and time-consuming

Lewis Structure

- Only valence electrons (except cations)
- Outermost shell only
- Protons and neutrons ignored
- Good at determining bonding in a covalent compound

Introducing Lewis Structures

	Bohr Model	Lewis Structure
Atom		$\cdot \bigodot_{\bullet}^{\bullet} \mid \bullet$
Ionic Compound		$[\mathrm{Na}]^{1+}\left[: C_{\bullet \bullet}^{\bullet} \mid:\right]$
Covalent Compound		$: \stackrel{\bigcirc}{\bigcirc}=C=\stackrel{\bullet}{\bigcirc}:$

Lewis Structures of Atoms

Valence Electrons in Each

Lewis Structures of Atoms

1. Write element symbol (capitalization matters!)
2. Draw valence electrons around, using the same positions as the Bohr model (i.e. clockwise, unpaired at first then paired)

Practice: Draw the Lewis structures of:
a) Mg atom
Mg.
c) H atom
b) N atom

d) F atom

Lewis Structures of Ions and Ionic Compounds

Lewis structures for ions are very similar to atoms.
Cation:

- Element symbol
- No electrons

$$
[\mathrm{Mg}]^{2+} \quad[\mathrm{Na}]^{1+}
$$

- Square brackets and charge

Anion:

- Element symbol

$\left[\bullet S_{\bullet \bullet}^{\bullet}:\right]^{2-}$
- Full valence shell
- Square brackets and charge

Lewis Structures of Ions and lonic Compounds

Practice. Draw the Lewis structures for the following:
a) $\mathrm{NaCl}[\mathrm{Na}]^{1+}[: \stackrel{\bullet \bullet}{\mathrm{C}} \mid:]$
b) $\mathrm{MgCl}_{2}[\mathrm{Mg}]^{2+}\left[: \ddot{\bullet} \ddot{C}_{\bullet} \mid:\right]^{1-}[: \stackrel{\bullet}{C} \mid:]$
c) $\mathrm{CaH}_{2}[\mathrm{Ca}]^{2+}[\ddot{\mathrm{H}}]^{1-}[\ddot{\mathrm{H}}]^{1-}$
d) $\mathrm{AlF}_{3}[\mathrm{Al}]^{3+}[: \ddot{\mathrm{F}}:]^{1-}[: \ddot{\mathrm{F}}:]^{1-}\left[\begin{array}{c}: \ddot{F}:]\end{array}\right.$

Lewis Structures of Covalent Compounds

Rule 1: All valence electrons must be used.
Rule 2: All atoms must have a full valence shell.

1. Draw the Lewis structure of each atom.
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Lewis Structures of Covalent Compounds

Rule 1: All valence electrons must be used.
Rule 2: All atoms must have a full valence shell.

Example: $\mathrm{H}_{2} \mathrm{O}$

1. Draw the Lewis structure of each atom (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Lewis Structures of Covalent Compounds

Rule 1: All valence electrons must be used.
Rule 2: All atoms must have a full valence shell.

Example: NH_{3}

1. Draw the Lewis structure of each atom (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Lewis Structures of Covalent Compounds

Rule 1: All valence electrons must be used.
Rule 2: All atoms must have a full valence shell.

Example: CO_{2}

1. Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

C needs 4 bonds; each O needs 2 bonds.
Total $\mathrm{e}=16$

This is a double bond. It represents two bonding pairs of electrons.

Lewis Structures of Covalent Compounds

Try drawing the following covalent compounds!

- HF
- PF_{3}
- CH_{4}
- $\mathrm{N}_{2}{ }^{\text {* }}$
- $\mathrm{CH}_{2} \mathrm{O}$
- $\mathrm{CO}_{2} \mathrm{H}_{4}$ (challenge)
*Technically, N_{2} is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

Lewis Structures of Covalent Compounds

Try drawing the following covalent compounds!

$\mathrm{H}-\ddot{\mathrm{F}}$:	HF (3 lone pairs; 1 bonding pair)	$\ddot{N} \equiv \ddot{N}$	N_{2}. (2 lone pairs; 3 bonding pairs)
	PF ${ }_{3}$ (10 lone pairs; 3 bonding pairs)		$\mathrm{CH}_{2} \mathrm{O}$ (2 lone pairs; 4 bonding pairs)
	CH_{4} (0 lone pairs; 4 bonding pairs)		$\mathrm{CO}_{2} \mathrm{H}_{4}$ (challenge) (4 lone pairs: 6 bonding pairs)

*Technically, N_{2} is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

Section 3: IUPAC Nomenclature

(not covered in textbook)

Chemical Nomenclature (Naming)

It is important to have one system to name chemical compounds. Why?

- Scientists can communicate with each other and the public, even in different languages
- Every compound has a unique name
- Information/records are accurate and consistent

IUPAC (International Union of Pure and Applied Chemistry) came up with a naming scheme that is used around the world.

Identifying Elements, Ionic Compounds, and Covalent Compounds

Identifying Elements, Ionic Compounds, Covalent Compounds

- Ionic compounds form when electrons are transferred and ions are formed. Usually involves a metal and a nonmetal.
- Covalent compounds form when two (or more) non-metal atoms share electrons.

Identifying Elements, Ionic Compounds, Covalent Compounds

Identifying Elements, Ionic Compounds, Covalent Compounds

Chemical	What is it?	Chemical	What is it?
PF_{3}		Mg	
CaCl_{2}		NaOH	
Cl_{2}		CCl_{4}	
NO_{2}		MgBr_{2}	
Br_{2}			

Naming Elements

Naming Elements

An element is a pure substance containing only one kind of atom.

Examples:

- Mg (magnesium)
- Ca (calcium)

Revisiting Diatomic Elements

- When in their elemental (i.e. not in a compound) form, these elements exist as diatomic molecules: two atoms bonding covalently to fill their valence shells.
- Must memorize!

Revisiting Diatomic Elements

Memory aids:

- HIBrONCIF
- HOFBrINCl
- $\underline{I} \underline{H}$ ave $\underline{\mathbf{N}}$ o Bright $\underline{\mathbf{O r}} \underline{\text { Clever }} \underline{\text { Friends }}$
- \underline{H} ave $\underline{\text { No }}$ Fear Of Ice $\underline{\text { Cold }} \underline{\text { Beer }}$
- I Bring Cookies For $\underline{\text { Our }} \underline{\text { New }}$ Home
...or make your own!

58	59	60											
Ce	Pr	Nd	Pm	Cm	Eu	Gd	Tb	Dy	Co	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Naming lons

(not covered in textbook)

Reference

Non-metal Element	"-ide" Ending
N, nitrogen	Nitride
O, oxygen	Oxide
F, fluorine	Fluoride
P, phosphorus	Phosphide
S, sulfur	Sulfide

Non-metal Element	"-ide" Ending
Cl, chlorine	Chloride
Se, selenium	Selenide
Br, bromine	Bromide
I, iodine	lodide
H, hydrogen	Hydride

Non-metal Element	"-ide" Ending
As, arsenic *	Arsenide
Te, tellurium *	Telluride
At, astatine *	Astatide

Different Types of Ions

Monovalention:

- Can only make one ion (see periodic table)
- Cations: write name of element
- Anions: write name of element with "-ide" ending

Examples:

- Sodium ion $=\mathrm{Na}^{+}$
- Yttrium ion $=Y^{3+}$
- Bromide ion $=\mathrm{Br}^{-}$
- Oxide ion $=\mathrm{O}^{2-}$

Different Types of Ions

Multivalent Ion:

- An element that can make multiple possible ions (see periodic table)
- Metals only
- Must specify charge with Roman numerals

Examples:

- manganese(III) $=\mathrm{Mn}^{3+}$
- manganese(IV) $=\mathrm{Mn}^{4+}$
- copper(I) $=\mathrm{Cu}^{+}$
- $\operatorname{vanadium}(\mathrm{V})=\mathrm{V}^{5+}$

Note: manganese and magnesium аге differentelements!

Different Types of Ions

Polyatomicion:

- Group of non-metal atoms covalently bonded with an ionic charge
- Spelling counts!!! (Copy from table)

Examples:

- $\mathrm{NH}_{4}{ }^{+}=$ammonium ion
- $\mathrm{PO}_{4}{ }^{3-}=$ phosphate ion
- $\mathrm{PO}_{3}{ }^{3-}=$ phosphite ion

Polyatomic lons

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions	Negative Ions	
$\mathrm{NH}_{4}{ }^{+}$Ammonium	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Acetate
	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate
	ClO_{3}^{-}	Chlorate
	$\mathrm{ClO}_{2}{ }^{-}$	Chlorite
	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
CN^{-}	Cyanide	
	$\mathrm{CrO}_{2}{ }^{2-}$	Dichromate
$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate, bicarbonate	
	HSO_{4}^{-}	Hydrogen sulfate, bisulfate
HS^{-}	Hydrogen sulfide, bisulfide	

| Positive Ions | Negative Ions | |
| :---: | :---: | :--- | :--- |
| | $\mathrm{HSO}_{3}{ }^{-}$ | Hydrogen sulfite, bisulfite |
| | OH^{-} | Hydroxide |
| | ClO^{-} | Hypochlorite |
| | $\mathrm{NO}_{3}{ }^{-}$ | Nitrate |
| | $\mathrm{NO}_{2}{ }^{-}$ | Nitrite |
| | ClO_{4}^{-} | Perchlorate |
| | MnO_{4}^{-} | Permanganate |
| | $\mathrm{PO}_{4}{ }^{3-}$ | Phosphate |
| | $\mathrm{PO}_{3}{ }^{3-}$ | Phosphite |
| | $\mathrm{SO}_{4}{ }^{2-}$ | Sulfate |
| | $\mathrm{SO}_{3}{ }^{2-}$ | Sulfite |

Ionic Compound Nomenclature

(not covered in textbook)

Intro to Ionic Compound Nomenclature

Cation comes first; anion comes second.
Names of ionic compounds tell you which ions are in the compound.

> e.g. "sodium chloride" has Na^{+}and Cl^{-}ions.
> e.g. "titanium(IV) dichromate" has Ti^{4+} and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ions.

Chemical formulae tell you how many of each ion are in the compound, using subscripts.

Naming lonic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
If the cation is polyatomic, write it exactly the way it is written in the table.
2. Write the anion with "-ide" ending (unless it is polyatomic).

Naming lonic Compounds

1. Write the cation, first.
2. Write the anion with "-ide" ending.

Chemical Formula	Periodic Table		Name
NaCl	$\begin{array}{ll} 11 & + \\ \mathrm{Na} \\ \text { Sodium } \\ 23.0 \end{array}$	17 Cl Chlorine 35.5	
MgBr_{2}	$\mathbf{1 2} \quad 2+$ $\mathbf{M g}$ Magnesium 24.3	35 Br Bromine 79.9	

Naming lonic Compounds

1. Write the cation, first.
2. Write the anion with "-ide" ending.

Th no! Chromium is multivalent.
Charge balancing is used to find the charge of a multivalent metal ion.

Chemical Formula	Periodic Table		Name
$\mathrm{Cr}_{2} \mathrm{O}_{3}$		8 2-	???
	$\mathrm{Cr}{ }^{2+}$	0	
	Crronium	oxygen	
CrO			???

Naming lonic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
2. Write the anion with "-ide" ending.

Charge Balancing (to find the charge of a multivalent metal ion)

1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
2) Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

Charge Balancing Part 1: Determining Charges of Multivalent Metals

$\mathrm{Cr}_{2} \mathrm{O}_{3}$:

24 3+
 Cr ${ }^{2+}$
 Chromium
 52.0
 8 2-
 0
 Oxygen
 16.0

1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
2) The total number of positive charges in an ionic compound must equal the total number of negative charges.
Determine the charge on the metal ion.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

We know there are 2 chromium ions and 3 axygen ions from the subscripts in the formula.

Total: 6 negative charges. Must have 6 positive to balance the charges.
Divide by \# of chromium ions (2). Therefore, each Cr ion must have a $3+$ charge.
chromium(III) oxide

Charge Balancing Part 1: Determining Charges of Multivalent Metals

CrO:

24 3+
 Cr ${ }^{2+}$
 Chromium
 52.0
 8 2-
 0
 Oxygen
 16.0

1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
2) The total number of positive charges in an ionic compound must equal the total number of negative charges.
Determine the charge on the metal ion.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

We know there is I chromium ion and I oxygen ion from the subscripts in the formula.

Total: 2 negative charges. Must have 2 positive to balance the charges.
Divide by \# of chromium ions (1). Therefore, each Cr ion must have a $2+$ charge.
chromium(II) oxide

Naming lonic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
If the cation is polyatomic, write it exactly the way it is written in the table.
2. Write the anion with "-ide" ending (unless it is polyatomic.)

Polyatomic lons

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions	Negative Ions	
$\mathrm{NH}_{4}{ }^{+}$Ammonium	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Acetate
	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate
	ClO_{3}^{-}	Chlorate
	ClO_{2}^{-}	Chlorite
	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
CN^{-}	Cyanide	
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Dichromate
HCO_{3}^{-}	Hydrogen carbonate, bicarbonate	
	HSO_{4}^{-}	Hydrogen sulfate, bisulfate
HS^{-}	Hydrogen sulfide, bisulfide	

| Positive Ions | Negative Ions | |
| :---: | :---: | :--- | :--- |
| | $\mathrm{HSO}_{3}{ }^{-}$ | Hydrogen sulfite, bisulfite |
| | OH^{-} | Hydroxide |
| | ClO^{-} | Hypochlorite |
| | $\mathrm{NO}_{3}{ }^{-}$ | Nitrate |
| | $\mathrm{NO}_{2}{ }^{-}$ | Nitrite |
| | ClO_{4}^{-} | Perchlorate |
| | MnO_{4}^{-} | Permanganate |
| | $\mathrm{PO}_{4}{ }^{3-}$ | Phosphate |
| | $\mathrm{PO}_{3}{ }^{3-}$ | Phosphite |
| | $\mathrm{SO}_{4}{ }^{2-}$ | Sulfate |
| | $\mathrm{SO}_{3}{ }^{2-}$ | Sulfite |

Polyatomic lons

Polyatomic ions: ions made of multiple atoms bonded covalently together. They have special names.
"hydroxide" or "OH-" is made of an oxygen and hydrogen atom bonded together. Altogether, the structure has a charge of 1 -.
e.g. sodium hydroxide: NaOH

"phosphate" or " $\mathrm{PO}_{4}{ }^{3-1}$ is made of one phosphorus atom and four oxygen atoms bonded together. Altogether, the structure has a charge of 3-.
e.g. sodium phosphate: $\mathrm{Na}_{3} \mathrm{PO}_{4}$ chromium(II) phosphate: $\mathrm{Cr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Polyatomic Ions

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts.

Chemical Formula	Simplified Model
A subscript outside a bracket applies to the entire polyatomic ion inside the bracket. $\mathrm{Be}_{3}\left(\mathrm{PO}_{4}\right)_{2}^{l}$	

Polyatomic Ions

To indicate more than one of a polyatomic ion in a compound, use brackets and subscripts. Treat polyatomic ions as single entities when naming, incl. counting atoms.

Chemical Formula	Cation	Anion	Atom Count
NaOH	Na^{+}	OH^{-}	$\mathrm{Na}: 1 \mathrm{O}: 1 \quad \mathrm{H}: 1$

Rules for Naming Ionic Compounds (FINAL)

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
If the cation is polyatomic, write it exactly the way it is written in the table.
2. Write the anion with "-ide" ending (unless it is polyatomic.)

Naming with Polyatomic lons: Examples

Naming with Polyatomic lons: Examples

Chemical Formula	Periodic Table	Name
$\mathrm{Sc}\left(\mathrm{HSO}_{3}\right)_{3}$	21 3+ Sc Scandium 45.0	1. scandium hydrogen sulfite $O R$ 2. scandium bisulfite
	HSO_{4}^{-} Hydrogen sulfate, bisulfate HS^{-} Hydrogen sulfide, bisulfide	seandium hydrogen sulfite, bisulfite
	HSO_{3}^{-}Hydrogen sulfite, bisulfite	

Naming with Polyatomic lons: Examples

Writing Formulas of Ionic Compounds

(not covered in textbook)

Intro to Ionic Compound Nomenclature

Names of ionic compounds tell you which ions are in the compound. The cation comes first; the anion comes second.
To write a chemical formula of an ionic compound, you must find out how many of each ion is involved, through charge balancing.

[^0]
Writing Formulas of Ionic Compounds (v1)

1. Write down each ion with its charge.
2. Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
3. Write your formula with subscripts.

To indicate more than one of a polyatomic ion, use brackets with the subscript outside.

Writing Chemical Formulas: Examples (v1)

$20 \quad 2+$
$\mathbf{C a}$
Calcium
40.1
$15 \quad 3-$
P
Phosphorus
31.0

calcium phosphide

Writing Chemical Formulas: Examples (v1)

24	$3+$
Cr	$2+$
Chromium	
52.0	

$\mathrm{HSO}_{3}{ }^{-} \quad$ Hydrogen sulf
OH^{-}Hydroxide
chromium(II) hydroxide

1) Write down each ion with its charge.
2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
3) Write your formula with subscripts.

Cr^{2+}
 OH^{-}

OH^{-}

$\mathrm{Cr}(\mathrm{OH})_{2}$

Writing Formulas of Ionic Compounds (v2)

1. Write down each ion with its charge.
2. Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.
3. Reduce the subscripts if both divisible by the same number.

Writing Chemical Formulas: Examples (v2)

20
$\mathbf{C a}$
Calcium
40.1

$15 \quad 3-$
\mathbf{P}
Phosphorus
31.0

calcium phosphide

Writing Chemical Formulas: Examples (v2)

24	$3+$
Cr	$2+$

Chromium
52.0
$\mathrm{HSO}_{3}{ }^{-} \quad$ Hydrogen sulf

OH^{-}Hydroxide

ClO^{-}Hypochlorite

chromium(II) hydroxide

1) Write down each ion with its charge.
2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.
3) Reduce the subscripts if both divisible by the same number.

1 and 2 do not have a common factor. Therefore, $\mathrm{Cr}(\mathrm{OH})_{2}$ is our final answer.

Writing Chemical Formulas: Examples (v2)

Writing Chemical Formulas: Examples (v2)

25	$2+$
Mn	$3+$
Manganese	
44.9	
54.	

$\mathrm{PO}_{3}{ }^{3-}$	Phosphite
$\mathrm{SO}_{4}{ }^{2-}$	Sulfate
$\mathrm{SO}_{3}{ }^{2-}$	Sulfite

Naming and Writing Formulas: Covalent Compounds

(not covered in textbook)

Naming Binary Covalent Compounds

- Binary covalent compound: a covalent compound containing only two element
- Names and formulas of covalent compounds both tell you:
- Which elements
- How many atoms of each element

Naming Binary Covalent Compounds

1. Write the first element.
2. Write the second element with "-ide" ending.
3. Add prefixes to show how many of each element there is.

- Do not add "mono-" to first element.
- If adding "mono-" to "-oxide", write "monoxide" instead.
e.g. $\mathrm{O}_{2} \mathrm{~F}_{2}$ dioxygen difluoride
e.g. PF_{3}
e.g. $\mathrm{N}_{2} \mathrm{O}$
phosphorus trifluoride
dinitrogen monoxide

Note: All compound
names (covalent and ionic) are lowercase.

Naming Binary Covalent Compounds

Covalent compounds with special names (must memorize):

$$
\begin{gathered}
\mathrm{NH}_{3}=\text { ammonia } \longleftarrow \\
\mathrm{H}_{2} \mathrm{O}=\text { water } \\
\mathrm{CH}_{4}=\text { methane }
\end{gathered}
$$

Chemical Formulas of Binary Covalent
Compounds

1. Identify the elements involved. Write their symbols.
2. Use the prefixes to determine the number of each element in the compound. Write as subscripts.
e.g. tetraphosphorus pentaoxide
$\mathrm{P}_{4} \mathrm{O}_{5}$
e.g. nitrogen triiodide
NI_{3}
e.g. xenon hexafluoride
$X e F_{6}$

More Practice: Binary Covalent Compounds

Chemical Formula

Compound Name

CO_{2}
CO
CCl_{4}
$\mathrm{P}_{4} \mathrm{O}_{5}$
diphosphorus pentaoxide
xenon hexafluoride

Section 4: Balancing Chemical Equations

(textbook pgs 125-133)

Chemical Equation Vocabulary

Reactants: what goes into the reaction; on the left side of reaction
arrow

$\mathrm{Zn}+\mathrm{HCl}$

Products: what comes out of the reaction; on the right side of reaction arrow
$\mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Chemical Equation Vocabulary

Word equation: uses words to describe reactants and products
zinc + hydrogen chloride \rightarrow zinc chloride + hydrogen

Skeleton equation: uses chemical formulas to describe reactants and products

$$
\mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

Chemical Reaction Vocabulary

Balanced chemical equation: uses coefficients and chemical formulas to describe reactants and products in their correct proportions

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

Chemical Reaction Vocabulary (FYI only)

In chemical equations, you will sometimes see information about the state that a chemical substance is in.

$$
\mathrm{E} . \mathrm{g} .2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}
$$

(g): Gas
(I): Liquid
(s): Solid
(aq): Aqueous solution (substance is dissolved in water)

Fruit Tart Case Study

You are making fruit tarts for a party. You have a certain number of each ingredient. How many tarts can you make? What is left over?

Fruit Tart Case Study

You are making fruit tarts for a party. Unfortunately, after you are finished, you see an Instagram picture that makes you want to rearrange your fruit tarts. You need 3 finished raspberry/blackberry tarts in total. How many of each tart will you start with? What will you be left with?

Fruit Tart Case Study

You are making fruit tarts for a party. Unfortunately, after you are finished, you see an Instagram picture that makes you want to rearrange your fruit tarts. You need 3 finished raspberry/blackberry tarts in total. How many of each tart will you start with? What will you be left with?

6 raspberries each

1 blackberry each

2 raspberries + 1 blackberry each

fruitless tart

Discuss: approaches and strategies in completing this problem

Fruit Tart Case Study

$\underline{1} \mathrm{Rb}_{6} \mathrm{~T}+\underline{3} \mathrm{BbT} \rightarrow \underline{3} \mathrm{Rb}_{2} \mathrm{BbT}+\underline{1} \mathrm{~T}$

Legend
$\mathrm{Rb}=$ "raspberry" element
$\mathrm{Bb}=$ "blackberry" element
T = "tart" element

Follow-up: Now, suppose that you need 12 tarts instead of 3 . How many raspberry and blackberry tarts do you start with?

Balancing Chemical Equations

Why balance?

- Chemical "recipes": how much do you put in? how much do you expect to yield?
- Conservation of mass: no atoms are ever created or destroyed

Balancing Chemical Equations: Vocabulary

Balancing chemical formulas involves adding coefficients in front of elements and compounds until the total number of atoms of each element in the reactants equals the products.

coefficients

(balancing numbers)

Balancing Chemical Equations: Vocabulary

> Balancing chemical formulas involves adding coefficients in front of elements and compounds until the total number of atoms of each element in the reactants equals the products.

Reactants: what goes
into the reaction

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

PhET Simulation

- https://phet.colorado.edu/sims/html/balancing-chemical-equations/1.1.0/balancing-chemical-equations_en.html

Balancing Chemical Equations: Tips

- Goal: the number of atoms of each element in the reactants equals the products.
- Change coefficients only. Never add or change subscripts.
- Balance atoms in compounds first. Save elements for last.
- If the same polyatomic ion appears in the reactants and products, you can often treat it as a group of atoms instead of splitting it up.
- At the end, reduce all coefficients to lowest whole-number terms.
- Note: Do not write a coefficient if there is only "1" of that element or compound.

Balancing can be frustrating at first. Practice, practice, practice!

Balancing Examples (easy)

$$
\text { 1. __ } \mathrm{N}_{2}+\underline{3} \mathrm{H}_{2} \rightarrow \underline{2} \mathrm{NH}_{3}
$$

Note: Do not write a coefficient if there is only " 1 " of that element or compound.
2. $2 \mathrm{NaCl}+\ldots \mathrm{F}_{2} \rightarrow \underline{2} \mathrm{NaF}+\ldots \mathrm{Cl}_{2}$
3. $2 \mathrm{Ag}_{2} \mathrm{O} \rightarrow \underline{4} \mathrm{Ag}+\ldots \mathrm{O}_{2}$
4. $4 \underline{P}+\underline{5} \mathrm{O}_{2} \rightarrow \underline{2} \mathrm{P}_{2} \mathrm{O}_{5}$

Balancing Examples (medium)

5. $2 \underset{\sim}{2} \mathrm{NaBr}+\ldots \mathrm{CaF}_{2} \rightarrow 2 \mathrm{NaF}+\ldots \mathrm{CaBr}_{2}$
6. $\ldots \mathrm{FeCl}_{3}+3 \mathrm{NaOH} \rightarrow \ldots \mathrm{Fe}(\mathrm{OH})_{3}+\underline{3} \mathrm{NaCl}$
7. $\ldots \mathrm{H}_{2} \mathrm{SO}_{4}+\underline{2} \mathrm{NaNO}_{2} \rightarrow \underline{2} \mathrm{HNO}_{2}+\ldots \mathrm{Na}_{2} \mathrm{SO}_{4}$
8. $\underline{6} \mathrm{CO}_{2}+\underline{6} \mathrm{H}_{2} \mathrm{O} \rightarrow \underline{-} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\underline{6} \mathrm{O}_{2}$
9. 2 $\mathrm{HCl}+\ldots \mathrm{CaCO}_{3} \rightarrow \ldots \mathrm{CaCl}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad CO_{2}

Balancing Examples (hard)

10.__ $\mathrm{C}_{3} \mathrm{H}_{8}+\underline{5} \mathrm{O}_{2} \rightarrow \underline{3} \mathrm{CO}_{2}+\underline{4} \mathrm{H}_{2} \mathrm{O}$
11. $\underline{2} \mathrm{C}_{6} \mathrm{H}_{14}+\underline{19} \mathrm{O}_{2} \rightarrow \underline{12} \mathrm{CO}_{2}+\underline{14} \mathrm{H}_{2} \mathrm{O} \xrightarrow[\substack{\text { Make sure to balance the } \\ \text { element }\left(\mathrm{O}_{2}\right) \text { last! }}]{\substack{\text { and }}}$
12. $2 \mathrm{C}_{8} \mathrm{H}_{18}+\underline{25} \mathrm{O}_{2} \rightarrow \underline{16} \mathrm{CO}_{2}+\underline{18} \mathrm{H}_{2} \mathrm{O}$

Trick for Combustion Reactions (e.g. \#10-12)

1. Balance every atom except oxygen.

$$
\ldots \mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \underline{6} \mathrm{CO}_{2}+\underline{7} \mathrm{H}_{2} \mathrm{O}
$$

2. Find out how many oxygen atoms you need the \ldots_{2} to contribute. Divide that number by 2 . This is your temporary coefficient for O_{2}.

$$
\mathrm{C}_{6} \mathrm{CH}_{4}+\mathrm{C}
$$

3. You are not allowed to have fractional coefficients in your final answer. Multiply all the coefficients by 2 .

$$
\underline{2} \mathrm{C}_{6} \mathrm{H}_{14}+\underline{19} \mathrm{O}_{2} \rightarrow \underline{12} \mathrm{CO}_{2}+\underline{14} \mathrm{H}_{2} \mathrm{O}
$$

Resources

- Naming and Writing Chemical Formulas
- Tyler DeWitt Videos https://www.youtube.com/user/tdewitt451/videos
- Mr. Carman's Blog (generates quizzes) https://www.kentschools.net/ccarman/cp-chemistry/practice-quizzes/compound-naming/
- Mr. Eisley (list of other resources to practice http://www.mreisley.com/nomenclature-practice.html
- ChemFiesta (worksheets with answers) https://chemfiesta.org/2015/01/13/naming-worksheets/
- Balancing Chemical Equations
- TemplateLAB (explanations and many worksheets with answers) https://templatelab.com/balancing-equations-worksheet/

[^0]: Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges.

