Chemical Compounds

Bond Formation, Nomenclature, and Modelling

Reference

Non-metal Element	"-ide" Ending
N, nitrogen	Nitride
O, oxygen	Oxide
F, fluorine	Fluoride
P, phosphorus	Phosphide
S, sulfur	Sulfide

Non-metal Element	"-ide" Ending
Cl, chlorine	Chloride
Se, selenium	Selenide
Br, bromine	Bromide
I, iodine	Iodide
H, hydrogen	Hydride

Non-metal Element	"-ide" Ending
As, arsenic *	Arsenide
Te, tellurium *	Telluride
At, astatine *	Astatide

Overview

Review: atoms and subatomic particles, ions
Modelling Atoms and Compounds

- Counting Atoms
- Bohr Models
- Lewis Diagrams

IUPAC Naming and Writing Formulas
Balanced Chemical Equations

IUPAC Nomenclature

(not covered in textbook)

Chemical Nomenclature (Naming)

It is important to have one system to name chemical compounds. Why?

- Scientists can communicate with each other and the public, even in different languages
- Every compound has a unique name
- Information/records are accurate and consistent

IUPAC (International Union of Pure and Applied Chemistry) came up with a naming scheme that is used around the world.

Ionic Compound Nomenclature

(not covered in textbook)

Intro to Ionic Compound Nomenclature

Cation comes first; anion comes second.
Names of ionic compounds tell you which ions are in the compound.

> e.g. "sodium chloride" has Na^{+}and Cl^{-}ions.
> e.g. "titanium(IV) dichromate" has Ti^{4+} and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ions.

Chemical formulae tell you how many of each ion are in the compound, using subscripts.

Naming lonic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
If the cation is polyatomic, write it exactly the way it is written in the table.
2. Write the anion with "-ide" ending (unless it is polyatomic).

Naming lonic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
If the cation is polyatomic, write it exactly the way it is written in the table.
2. Write the anion with "-ide" ending (unless it is polyatomic).

Naming lonic Compounds

1. Write the cation, first.
2. Write the anion with "-ide" ending.

Chemical Formula	Periodic Table		Name
NaCl	$\begin{aligned} & 11 \\ & \mathrm{Na} \\ & \text { Sodium } \\ & 23.0 \end{aligned}$	17 Cl Chlorine 35.5	
MgBr_{2}	$\begin{aligned} & 12 \quad 2+ \\ & \mathbf{M g} \\ & \text { Magnesium } \\ & 24.3 \end{aligned}$	35 Br Bromine 79.9	

Your Turn!

Name the following ionic compounds with monovalent metals.
KI
$\mathrm{Be}_{3} \mathrm{P}_{2}$
$\mathbf{Z n O}$
BaF_{2}
AlBr_{3}
\square

Naming lonic Compounds

1. Write the cation, first.
2. Write the anion with "-ide" ending.

Th no! Chromium is multivalent.
Charge balancing is used to find the charge of a multivalent metal ion.

Chemical Formula	Periodic Table		Name
$\mathrm{Cr}_{2} \mathrm{O}_{3}$		8 2-	???
	$\mathrm{Cr}{ }^{2+}$	0	
	${ }_{5}$ Cromium	oxpen	
CrO			???

Naming lonic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
2. Write the anion with "-ide" ending.

Charge Balancing (to find the charge of a multivalent metal ion)

1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
2) Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

Charge Balancing Part 1: Determining Charges of Multivalent Metals

24 3+
 Cr ${ }^{2+}$
 Chromium
 52.0
 8 2-
 0
 Oxygen
 16.0

Charge Balancing Part 1: Determining Charges of Multivalent Metals

CrO:

24 3+
 Cr ${ }^{2+}$
 Chromium
 52.0
 8 2-
 0
 Oxygen
 16.0

1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
2) The total number of positive charges in an ionic compound must equal the total number of negative charges.
Determine the charge on the metal ion.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

Total: 2 negative charges. Must have 2 positive to balance the charges.
Divide by \# of chromium ions (1). Therefore, each Cr ion must have a $2+$ charge.
chromium(II) oxide

We know there is I chromium ion and I oxygen ion from the subscripts in the formula.

Your Turn!

Name the following ionic compounds with multivalent metals.

TiO_{2} $\mathrm{Mo}_{2} \mathrm{~S}_{3}$ $\mathrm{Hg}_{3} \mathrm{P}$
MnSe_{2}

Your Turn!

Name the following ionic compounds. Make sure you do charge balancing for ionic compounds with multivalent metals only.

1) Who wants to take a $\mathbf{N a}_{\mathbf{3}} \mathbf{P}$?
2) Better FeS up.
3) Is your name $\mathbf{B e}_{3} \mathbf{N}_{2}$?
4) What about $\mathbf{A m I}_{6}$?
5) "Vegetable" in Chinese is $\mathbf{C a I}_{\mathbf{2}}$.

Naming lonic Compounds

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.
For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.
If the cation is polyatomic, write it exactly the way it is written in the table.
2. Write the anion with "-ide" ending (unless it is polyatomic.)

Polyatomic lons

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions	Negative Ions	
$\mathrm{NH}_{4}{ }^{+}$Ammonium	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Acetate
	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate
	ClO_{3}^{-}	Chlorate
	$\mathrm{ClO}_{2}{ }^{-}$	Chlorite
	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
CN^{-}	Cyanide	
	$\mathrm{CrO}_{2}{ }^{2-}$	Dichromate
$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate, bicarbonate	
	HSO_{4}^{-}	Hydrogen sulfate, bisulfate
HS^{-}	Hydrogen sulfide, bisulfide	

| Positive Ions | Negative Ions | |
| :---: | :---: | :--- | :--- |
| | $\mathrm{HSO}_{3}{ }^{-}$ | Hydrogen sulfite, bisulfite |
| | OH^{-} | Hydroxide |
| | ClO^{-} | Hypochlorite |
| | $\mathrm{NO}_{3}{ }^{-}$ | Nitrate |
| | $\mathrm{NO}_{2}{ }^{-}$ | Nitrite |
| | ClO_{4}^{-} | Perchlorate |
| | MnO_{4}^{-} | Permanganate |
| | $\mathrm{PO}_{4}{ }^{3-}$ | Phosphate |
| | $\mathrm{PO}_{3}{ }^{3-}$ | Phosphite |
| | $\mathrm{SO}_{4}{ }^{2-}$ | Sulfate |
| | $\mathrm{SO}_{3}{ }^{2-}$ | Sulfite |

Naming with Polyatomic lons: Examples

Chemical Formula	Periodic Table		Name
$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathbf{1 2}$ $2+$ HSO_{3}^{-} Hydrogen sulfite, bisulfite		magnesium hydroxideammonium sulfide
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$	Positive Ions	$\begin{array}{ll} 16 & 2- \\ \mathbf{S} & \\ \text { Sulfur } & \\ 32.1 & \end{array}$	

Naming with Polyatomic lons: Examples

Chemical Formula	Periodic Table	Name
$\mathrm{Sc}\left(\mathrm{HSO}_{3}\right)_{3}$	$\begin{aligned} & 21 \quad 3+ \\ & \text { Sc } \\ & \text { Scandium } \\ & 45.0 \end{aligned}$	1. scandium hydrogen sulfite OR 2. scandium bisulfite
	HSO_{4}^{-} Hydrogen sulfate, bisulfate HS^{-} Hydrogen sulfide, bisulfide	seandium hydrogen sulfite, bisulfite
	HSO_{3}^{-}Hydrogen sulfite, bisulfite	

Naming with Polyatomic lons: Examples

22	$4+$
Titanium	
Ti.	$3+$

$\mathrm{ClO}_{2}-$	Chlorite
$\mathrm{CrO}_{4}{ }^{2-}$	Chromate

CN^{-}Cvanide

$\mathrm{Ti}_{2}\left(\mathrm{CrO}_{4}\right)_{3}:$

Writing Formulas of Ionic Compounds

(not covered in textbook)

Intro to Ionic Compound Nomenclature

Names of ionic compounds tell you which ions are in the compound. The cation comes first; the anion comes second.
To write a chemical formula of an ionic compound, you must find out how many of each ion is involved, through charge balancing.

[^0]
Writing Formulas of Ionic Compounds (v1)

1. Write down each ion with its charge.
2. Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
3. Write your formula with subscripts.

To indicate more than one of a polyatomic ion, use brackets with the subscript outside.

Writing Chemical Formulas: Examples (v1)

$20 \quad 2+$
$\mathbf{C a}$
Calcium
40.1
$15 \quad 3-$
P
Phosphorus
31.0

calcium phosphide

1) Write down each ion with its charge.	
2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.	$\mathrm{Ca}^{2+} \mathrm{Pa}^{2+} \mathrm{P}^{3-}$
3) Write your formula with subscripts.	Ca^{2+}

Writing Chemical Formulas: Examples (v1)

24	$3+$
Cr	$2+$
Chromium	
52.0	

$\mathrm{HSO}_{3}{ }^{-} \quad$ Hydrogen sulf
OH^{-}Hydroxide
chromium(II) hydroxide

1) Write down each ion with its charge.
2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
3) Write your formula with subscripts.

Cr^{2+}
 OH^{-}

OH^{-}

$\mathrm{Cr}(\mathrm{OH})_{2}$

Writing Formulas of Ionic Compounds (v2)

1. Write down each ion with its charge.
2. Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.
3. Reduce the subscripts if both divisible by the same number.

Writing Chemical Formulas: Examples (v2)

20
$\mathbf{C a}$
Calcium
40.1

$15 \quad 3-$
\mathbf{P}
Phosphorus
31.0

calcium phosphide

Writing Chemical Formulas: Examples (v2)

24	$3+$
Cr	$2+$

Chromium
52.0

$\mathrm{HSO}_{3}{ }^{-}$	Hydrogen sulf
OH^{-}	Hydroxide
ClO^{-}	Hypochlorite

chromium(II) hydroxide

1) Write down each ion with its charge.
2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.
3) Reduce the subscripts if both divisible by the same number.

1 and 2 do not have a common factor. Therefore, $\mathrm{Cr}(\mathrm{OH})_{2}$ is our final answer.

Writing Chemical Formulas: Examples (v2)

Writing Chemical Formulas: Examples (v2)

25	$2+$
Mn	$3+$
Manganese	
44.9	
54.	

$\mathrm{PO}_{3}{ }^{3-}$	Phosphite
$\mathrm{SO}_{4}{ }^{2-}$	Sulfate
$\mathrm{SO}_{3}{ }^{2-}$	Sulfite

Naming and Writing Formulas: Covalent Compounds

(not covered in textbook)

Naming Binary Covalent Compounds

Binary covalent compound: a covalent compound containing only two elements

Names and formulas of covalent compounds both tell you:
-Which elements?

- How many atoms of each element?

Example: dichlorine monoxide is $\mathrm{Cl}_{2} \mathrm{O}$

Prefixes Reference

PREFIXES

1	mono
2	di
3	tri
4	tetra
5	penta
6	hexa
7	hepta
8	octa
9	nona
10	deca

Arabic Numeral	Prefix	Arabic Numeral	Prefix
$\mathbf{1}$	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

Naming Binary Covalent Compounds

1. Write the first element.
2. Write the second element with "-ide" ending.
3. Add prefixes to show how many of each element there is.

- Do not add "mono-" to first element.
- If adding "mono-" to "-oxide", write "monoxide" instead.
e.g. $\mathrm{O}_{2} \mathrm{~F}_{2}$ dioxygen difluoride
e.g. PF_{3}
e.g. $\mathrm{N}_{2} \mathrm{O}$
phosphorus trifluoride
dinitrogen monoxide

Note: All compound names (covalent and ianic) are lowercase.

More Practice: Binary Covalent Compounds

Chemical Formula

$\mathrm{S}_{2} \mathrm{O}_{5}$

$\mathrm{Cl}_{3} \mathrm{O}_{7}$

CBr_{2}

NO
CCl_{4}

$\mathbf{P}_{2} \mathrm{~S}_{6}$

Naming Binary Covalent Compounds

Covalent compounds with special names (must memorize):

$$
\begin{gathered}
\mathrm{NH}_{3}=\text { ammonia } \longleftarrow \\
\mathrm{H}_{2} \mathrm{O}=\text { water } \\
\mathrm{CH}_{4}=\text { methane }
\end{gathered}
$$

- Chemical Formulas of Binary Covalent Compounds

1. Identify the elements involved. Write their symbols.
2. Use the prefixes to determine the number of each element in the compound. Write as subscripts.
e.g. tetraphosphorus pentaoxide
$\mathrm{P}_{4} \mathrm{O}_{5}$
e.g. nitrogen triiodide
NI_{3}
e.g. selenium difluoride

$$
\mathrm{SeF}_{2}
$$

More Practice: Binary Covalent Compounds

Chemical Formula	Compound Name
	nitrogen trioxide
	triphosphorus tetraoxide
	iodine pentafluoride
	tricarbon disulfide
	boron trifluoride
	xenon hexafluoride

Resources

- Naming and Writing Chemical Formulas
- Tyler DeWitt Videos https://www.youtube.com/user/tdewitt451/videos
- Mr. Carman's Blog (generates quizzes) https://www.kentschools.net/ccarman/cp-chemistry/practice-quizzes/compound-naming/
- Mr. Eisley (list of other resources to practice http://www.mreisley.com/nomenclature-practice.html
- ChemFiesta (worksheets with answers) https://chemfiesta.org/2015/01/13/naming-worksheets/
- Balancing Chemical Equations
- TemplateLAB (explanations and many worksheets with answers) https://templatelab.com/balancing-equations-worksheet/

[^0]: Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges.

