Chemical Compounds Bond Formation, Nomenclature, and Modelling

Non-metal Element	"-ide" Ending	Non-metal Element	"-ide" Ending	Non-metal Element	"-ide" Ending
N , nitrogen	Nitride	CI , chlorine	Chloride	As , arsenic *	Arsenide
O , oxygen	Oxide	Se , selenium	Selenide	Te , tellurium *	Telluride
F, fluorine	Fluoride	Br , bromine	Bromide	At , astatine *	Astatide
P, phosphorus	Phosphide	I, iodine	lodide		
S , sulfur	Sulfide	H, hydrogen	Hydride		

* uncommon

Review: atoms and subatomic particles, ions

Modelling Atoms and Compounds

- Counting Atoms
- Bohr Models
- Lewis Diagrams

IUPAC Naming and Writing Formulas

Balanced Chemical Equations

IUPAC Nomenclature

(not covered in textbook)

Chemical Nomenclature (Naming)

It is important to have *one* system to name chemical compounds. Why?

- Scientists can communicate with each other and the public, even in different languages
- Every compound has a unique name
- Information/records are accurate and consistent

IUPAC (International Union of Pure and Applied Chemistry) came up with a naming scheme that is used around the world.

Ionic Compound Nomenclature

(not covered in textbook)

Intro to Ionic Compound Nomenclature

Cation comes first; anion comes second.

Names of ionic compounds tell you *which ions* are in the compound.

e.g. "sodium chloride" has Na⁺ and Cl⁻ ions.

e.g. "titanium(IV) dichromate" has Ti⁴⁺ and $Cr_2O_7^{2-}$ ions. Chemical formulae tell you *how many of each ion* are in the compound, using subscripts.

e.g. "CaCl₂" has 1 Ca²⁺ ion and 2 Cl⁻ ions. e.g. "Mn(OH)₂" has 1 Mn⁴⁺ ion and 2 OH⁻ ions.

- 1. Write the **cation**, first.
 - For metals that can only form one ion (monovalent metals), do not write the ion charge.
 - For multivalent metals, determine the ion charge through **charge balancing**. Then, put the ion charge in **Roman numerals**, in brackets.
 - If the cation is polyatomic, write it exactly the way it is written in the table.
- 2. Write the anion with **"-ide" ending** (unless it is polyatomic).

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.

For multivalent metals, determine the ion charge through **charge balancing**. Then, put the ion charge in **Roman numerals**, in brackets.

If the cation is polyatomic, write it exactly the way it is written in the table.

2. Write the anion with **"-ide" ending** (unless it is polyatomic).

- 1. Write the *cation, first*.
- 2. Write the **anion with "-ide" ending**.

Chemical Formula	Periodic Table	Name
NaCl	11 + 17 Na CI Sodium Chlorine 23.0 35.5	-
MgBr ₂	12 2+ 35 Mg Br Br Magnesium Bromine 24.3 79.9	

Your Turn!

Name the following ionic compounds with monovalent metals.

KI Be_3P_2 ZnO BaF₂ AlBr₃

- 1. Write the *cation, first*.
- 2. Write the **anion with "-ide" ending**.

Oh no! Chromium is multivalent. Charge balancing is used to find the charge of a **multivalent metal ion.**

Chemical Formula	Periodic Table	Name
Cr ₂ O ₃	24 3+ 8 2- Cr 2+ O	???
CrO	ChromiumOxygen52.016.0	???

- 1. Write the cation, first.
 - For metals that can only form one ion (monovalent metals), do not write the ion charge.
 - For multivalent metals, determine the ion charge through *charge balancing*. Then, put the ion charge in *Roman numerals*, in brackets.
- 2. Write the anion with "-ide" ending.

Charge Balancing (to find the charge of a **multivalent** metal ion)

- 1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
- 2) Rule: The total number of **positive** charges in an ionic compound must equal the total number of **negative** charges. Determine the charge on the metal ion.
- 3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

Charge Balancing Part 1: Determining Charges of Multivalent Metals

		Cr ₂ O ₃ :			
24 3+ Cr 2+ Chromium		1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	Cr? O ²⁻ O ²⁻ Cr? O ²⁻ O ²⁻ Cr? O ²⁻ O ²⁻		
52.0 8 2- 0 Oxygen 16.0		2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 6 negative charges. Must have 6 positive to balance the charges. Divide by # of chromium ions (2). Therefore, each Cr ion must have a 3+ charge.		
		3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.	chromium(III) oxide		

Charge Balancing Part 1: Determining Charges of Multivalent Metals

		CrO:			
24 3+ Cr 2+		1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	Cr? O ²⁻ We know there is 1 chromiun ion and 1 oxygen ion from th subscripts in the formula.		
Chromium 52.0		2) The total number of positive charges in an ionic compound must equal the total number of negative charges.	Total: 2 negative charges. Must have 2 positive to balance the charges. Divide by # of chromium ions (1). Therefore,		
8 O	2–	Determine the charge on the metal ion.	each Cr ion must have a 2+ charge.		
Oxygen 16.0		3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.	chromium(II) oxide		

Your Turn!

Name the following ionic compounds with multivalent metals.

TiO₂ Mo_2S_3 Hg₃P MnSe₂ **SnI**₂

Your Turn!

Name the following ionic compounds. Make sure you do charge balancing for ionic compounds with multivalent metals only.

- 1) Who wants to take a Na_3P ?
- 2) Better **FeS** up.
- 3) Is your name **Be₃N₂**?
- 4) What about AmI₆?
- 5) "Vegetable" in Chinese is CaI₂.

- 1. Write the cation, first.
 - For metals that can only form one ion (monovalent metals), do not write the ion charge.
 - For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.

If the cation is polyatomic, write it exactly the way it is written in the table.

2. Write the anion with "-ide" ending (unless it is polyatomic.)

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions		Negative Ions	
NH4 ⁺ Ammonium	CH ₃ COO ⁻	Acetate	
	CO3 ^{2–}	Carbonate	
	ClO ₃ ⁻	Chlorate	
	ClO ₂ ⁻	Chlorite	
	CrO ₄ ^{2–}	Chromate	
	CN^{-}	Cyanide	
	$Cr_2O_7^{2-}$	Dichromate	
	HCO ₃ ⁻	Hydrogen carbonate, bicarbonate	
	HSO ₄ ⁻	Hydrogen sulfate, bisulfate	
	HS ⁻	Hydrogen sulfide, bisulfide	

Positive Ions		Negative Ions
	HSO ₃ ⁻	Hydrogen sulfite, bisulfite
	OH-	Hydroxide
	ClO ⁻	Hypochlorite
	NO ₃ ⁻	Nitrate
	NO ₂ ⁻	Nitrite
	ClO ₄ ⁻	Perchlorate
	MnO_4^-	Permanganate
	PO4 ³⁻	Phosphate
	PO3 ³⁻	Phosphite
	SO4 ²⁻	Sulfate
	SO3 ²⁻	Sulfite 20

Naming with Polyatomic Ions: Examples

Chemical Formula	Periodic Table	Name
Mg(OH) ₂	122+MgHSO3 ⁻ MgOH ⁻ OH ⁻ Hydroxide24.3CIO ⁻	magnesium hydroxide
$(\mathbf{NH}_4)_2\mathbf{S}$	Positive Ions162–NH4+AmmoniumSulfur32.1	ammonium sulfide

Naming with Polyatomic Ions: Examples

Chemical Formula	Periodic Table	Name
Sc(HSO ₃) ₃	21 3+ Sc Scandium 45.0	 scandium hydrogen sulfite OR scandium bisulfite
	HSO_4^- Hydrogen sulfate, bisulfate HS^- Hydrogen sulfide, bisulfide HSO_3^- Hydrogen sulfite, bisulfite	scandium hydrogen sulfite, bisulfite

Naming with Polyatomic Ions: Examples

	Ti ₂ (Cr	$(O_4)_3$:
22 4+ Ti 3+ Titanium	1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	Ti? CrO ₄ ²⁻ Ti? CrO ₄ ²⁻ CrO ₄ ²⁻
47.9 CIO_2^- Chlorite CrO_4^{2-} Chromate	2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 6 negative charges. Must have 6 positive to balance the charges. Divide by # of titanium ions (2). Therefore, each Ti ion must have a 3+ charge.
CN ⁻ Cvanide	3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals. Spell the polyatomic ion exactly as it is spelled in the reference sheet.	titanium(III) chromate

Writing Formulas of Ionic Compounds

(not covered in textbook)

Intro to Ionic Compound Nomenclature

Names of ionic compounds tell you *which ions* are in the compound. The cation comes first; the anion comes second.

To write a chemical formula of an ionic compound, you must find out how many of each ion is involved, through **charge balancing**.

Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges.

Writing Formulas of Ionic Compounds (v1)

- 1. Write down each ion with its charge.
- 2. Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
- 3. Write your formula with subscripts.

To indicate more than one of a polyatomic ion, use brackets with the subscript outside.

20 2+	calcium pl	nosphide
Calcium	1) Write down each ion with its charge.	Ca ²⁺ P ³⁻
40.1 15 3– P	2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.	Ca ²⁺ P ³⁻ Ca ²⁺
Phosphorus 31.0	3) Write your formula with subscripts.	Ca ₃ P ₂

	24 3+		chromium(ll) hydroxide
	Cr 2+ Chromium 52.0		 Write down each ion with its charge. Add more of the ions to balance the charges: the total number of positive and 	Cr ²⁺ OH ⁻ OH ⁻
HSO OF	• •		negative charges must be equal.	
ClC	·		3) Write your formula with subscripts.	Cr(OH) ₂

Writing Formulas of Ionic Compounds (v2)

- 1. Write down each ion with its charge.
- 2. Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.
- 3. Reduce the subscripts if both divisible by the same number.

20 2+	calcium pl	calcium phosphide		
Calcium	1) Write down each ion with its charge.	Ca ²⁺ P ³⁻		
40.1 15 3– P	2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.	Ca ₃ P ₂		
Phosphorus 31.0	3) Reduce the subscripts if both divisible by the same number.	2 and 3 do not have a common factor. Therefore, Ca₃P₂ is our final answer .		

	24	3+		chromium(ll) hydroxide
	Cr	3+ 2+		1) Write down each ion with its charge.	Cr^{2+}
	Chrom 52.0				Cr ²⁺ OH-
HSOg		drogen s	sulf	2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.	Cr(OH) ₂
OH	I [–] Hy	droxide		2) Paduca the subscripts if both divisible	
CIC)- Ну	pochlori	ite	3) Reduce the subscripts if both divisible by the same number.	1 and 2 do not have a common factor. Therefore, Cr(OH)₂ is our final answer.

	12	2+		magnesium carbonate		
	Mg			1) Write down each ion with its charge.		
	Magne				$Mg^{2+}CO_{3}^{2-}$	
	24.3			2) Write the chemical formula by writing		
CH ₃	COO-	Acetat	æ	the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.	$Mg_2(CO_3)_2$	
	CO_{3}^{2-}	Carbo	nate			
	ClO_3^- Chlorate		ate	3) Reduce the subscripts if both divisible by the same number.	2 and 2 are both divisible by 2. Rewrite formula as MgCO₃ .	

25 2+	manganese(IV) sulfate	
Mn 3+ 4+ Manganese	1) Write down each ion with its charge. Mn ⁴⁺ SO ₄ ²⁻	
54.9	2) Write the chemical formula by writing the cation first and the anion second.	
PO_3^{3-} Phosphite	the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts. $Mn_2(SO_4)_4$	
SO ₄ ^{2–} Sulfate		
SO_3^{2-} Sulfite	3) Reduce the subscripts if both divisible by 2. by the same number. 4 and 2 are both divisible by 2. Rewrite formula as Mn(SO ₄) ₂ .	

Naming and Writing Formulas: Covalent Compounds

(not covered in textbook)

Naming Binary Covalent Compounds

Binary covalent compound: a covalent compound containing only two elements

Names and formulas of covalent compounds *both* tell you:

- Which elements?
- How many atoms of each element?

Example: **dichlorine monoxide** is **Cl₂O**

Prefixes Reference

PREFIXES

mono
di
tri
tetra
penta
hexa
hepta
octa
nona
deca

Arabic Numeral	Prefix	Arabic Numeral	Prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

Naming Binary Covalent Compounds

- 1. Write the first element.
- 2. Write the second element with <u>"-ide" ending</u>.
- 3. Add **prefixes** to show how many of each element there is.
 - Do not add *"mono-"* to first element.
 - If adding "mono-" to "-oxide", write <u>"monoxide"</u> instead.
- e.g. O_2F_2 di oxygen difluoride e.g. PF_3 phosphorus trifluoride e.g. N_2O di nitrogen monoxide

Note: All compound names (covalent *and* ionic) are lowercase.

More Practice: Binary Covalent Compounds

Chemical Formula	Compound Name
S ₂ O ₅	
S_2O_5 Cl_3O_7	
CBr ₂	
NO	
CCl ₄	
P_2S_6	20

Naming Binary Covalent Compounds

Covalent compounds with special names (must memorize):

$$NH_3 = ammonia \leftarrow$$

 $H_2O = water$
 $CH_4 = methane$

NH₄⁺ (ammonium ion) and NH₃ (ammonia) are *not the same!!!*

Chemical Formulas of Binary Covalent Compounds

- 1. Identify the elements involved. Write their **<u>symbols</u>**.
- 2. Use the **prefixes** to determine the number of each element in the compound. Write as **<u>subscripts</u>**.

```
e.g. tetraphosphorus pentaoxide

P_4O_5

e.g. nitrogen triiodide

NI_3

e.g. selenium difluoride

Se F_2
```

More Practice: Binary Covalent Compounds

Chemical Formula	Compound Name
	nitrogen trioxide
	triphosphorus tetraoxide
	iodine pentafluoride
	tricarbon disulfide
	boron trifluoride
	xenon hexafluoride

Resources

- Naming and Writing Chemical Formulas
 - Tyler DeWitt Videos https://www.youtube.com/user/tdewitt451/videos
 - Mr. Carman's Blog (generates quizzes) <u>https://www.kentschools.net/ccarman/cp-chemistry/practice-</u> <u>quizzes/compound-naming/</u>
 - Mr. Eisley (list of other resources to practice <u>http://www.mreisley.com/nomenclature-practice.html</u>
 - ChemFiesta (worksheets with answers)
 <u>https://chemfiesta.org/2015/01/13/naming-worksheets/</u>
- Balancing Chemical Equations
 - TemplateLAB (explanations and many worksheets with answers) <u>https://templatelab.com/balancing-equations-worksheet/</u>