Chemical Compounds Bond Formation, Nomenclature, and Modelling

Review: atoms and subatomic particles, ions

Modelling Atoms and Compounds

- Counting Atoms
- Bohr Models
- Lewis Diagrams

IUPAC Naming and Writing Formulas

Balanced Chemical Equations

Section 1: Review

- 1. Why do compounds form?
- 2. How do you draw the Bohr model for an atom? Ion?
- 3. What is a valence shell? Valence electron?
- 4. On the periodic table, where are the metals and nonmetals? What is the difference?
- 5. Which of these compounds are ionic? Covalent? What's the difference?
- 6. How do you name ionic compounds?

Atom:

- Smallest unit of matter
- No electric charge (neutral)
- Examples:
 - Na (sodium atom)
 - O (oxygen atom)

Proton: <u>positively</u> charged particle in the <u>**nucleus**</u> of an atom; has a mass of <u>1</u>

Neutron: <u>uncharged</u> particle in the <u>nucleus</u> of an atom; has a mass of <u>1</u>

Electron: <u>negatively</u> charged particle in <u>energy shell</u> surrounding the nucleus of the atom; very tiny (mass of <u>0</u>)

	# protons	# neutrons	# electrons
atom (neutral)	atomic number	rounded atomic mass minus atomic number	atomic number

For an *atom*:

- # protons = atomic number
- # electrons = atomic number
- # neutrons =

rounded atomic mass – atomic number

If the tenths place is a 4 or lower, round down.	32.1 → 32	65.4 → 65
If the tenths place is a 5 or higher, round up.	10.8 → 11	35.5 → 36

As a class, calculate the number of protons, neutrons, and electrons for the following atoms:

• Al

- Mg
- B
- Ti

Practice: Atoms and Subatomic Particles

1) Complete the following table.

atom	# protons	# neutrons	# electrons
Ca	20	20	20
F	9	10	9
Cl	17	19	17
Ar	18	22	18
Zn	30	35	30

Consider the following (not on your sheet) :

- Why are the number of protons and electrons the same for an atom? (Hint: what is the charge on an atom?)
- 3) Explain why you need to subtract atomic number from atomic mass to calculate the number of neutrons in an atom.

Ion: an atom or molecule with an <u>electric charge</u>; formed by <u>gaining or losing electrons</u>

Examples:

- <u>Na+</u> (sodium ion with 1+ charge)
- <u>O²⁻</u>(oxygen ion with 2- charge)

Review: lons

The Periodic Table tells you which ion(s) an atom can form.

- **Cation**: <u>positively</u> charged ion (e.g. Ca²⁺, Cr³⁺, NH₄⁺); forms when electrons are <u>lost</u>
- Anion: <u>negatively</u> charged ion (e.g. N³⁻, S²⁻, PO₄³⁻); forms when electrons are <u>gained</u>

Review: lons

CATIONs: positive ions, protons > electrons

Cats are HAPPY.

ANIONS: negative ions, protons < electrons (onion)

Onions make you Cry (negative).

	# protons	# neutrons	# electrons
atom (neutral)	atomic number	rounded atomic mass minus atomic number	atomic number
ion (charged)			atomic number minus ion charge

Review: lons

For an *ion*:

• # protons = atomic number

• # electrons = atomic number - ion charge

• # neutrons = rounded atomic mass - atomic number

Practice: lons

	# protons	# neutrons	# electrons	Cation or Anion?
Mg ²⁺	12	12	10	cation
Ti ³⁺	22	26	19	cation
O ²⁻	8	8	10	anion
As ³⁻	33	42	36	anion
phosphorus ion	15	16	18	anion
lithium ion	3	4	2	cation
manganese(IV) ion	25	30	21	cation
cobalt(III) ion	27	32	24	cation

Polyatomic lons

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Posit	tive Ions		Negative Ions
NH4 ⁺	Ammonium	CH ₃ COO ⁻	Acetate
		CO3 ²⁻	Carbonate
		ClO ₃ ⁻	Chlorate
		ClO_2^-	Chlorite
		CrO ₄ ^{2–}	Chromate
		CN^{-}	Cyanide
		$Cr_2O_7^{2-}$	Dichromate
		HCO ₃ ⁻	Hydrogen carbonate, bicarbonate
		$\mathrm{HSO_4}^-$	Hydrogen sulfate, bisulfate
		пс-	Hudrogen sulfide bisulfide

A **polyatomic ion** is a **group** of covalently bonded atoms with a charge.

E.g. NH₄ (nitrogen tetrahydride) can lose an electron to become NH₄⁺ (ammonium ion)

Practice: Atoms and Ions

- 3. Why do atoms and ions have the same number of protons and neutrons, but different numbers of electrons?
- 4. Why do ions never have the same number of protons as electrons?
- 5. To form an anion, does an atom have to gain or lose electrons? Why?
- 6. When a calcium atom becomes an ion, does it have to gain or lose electrons? How many?

Practice: Atoms and Ions

- 7. Is the chlorine ion a cation or an anion? Does it form by gaining or losing electrons?
- 8. Is Cr^{3+} a cation or anion?
- 9. Does arsenic form an ion by gaining or losing electrons? How many? How do you know?
- 10.Why do we call manganese a multivalent element? List 3 other multivalent elements.

Practice: Atoms and Ions

	# protons	# neutrons	# electrons	Type (Atom, Cation, or Anion?)
Ν	7	7	7	atom
Br⁻	35	45	36	anion
Zn ²⁺	30	35	28	cation
Li	3	4	3	atom
aluminum	13	14	13	atom
calcium ion	20	20	18	cation
nickel(III) ion	28	31	25	cation
potassium	19	20	19	atom

Section 2: Modelling Atoms and Compounds

Modelling Atoms and Compounds

- Introduction to Chemical Compounds
- Counting Atoms
- Bohr Models of Atoms, Ionic Compounds, and Covalent Compounds
- Lewis Diagrams of Atoms, Ionic Compounds, and Covalent Compounds

Introduction to Chemical Compounds

What are compounds? Why do they form? (textbook pgs ~120-124)

- The valence shell is the <u>outermost shell containing</u> <u>electrons</u>. Electrons in this shell are called <u>valence electrons</u>.
- A stable atom has a full valence shell.

- The valence shell is the <u>outermost shell containing</u>
 <u>electrons</u>. Electrons in this shell are called <u>valence electrons</u>.
- A stable atom has a full valence shell.
- Atoms react to form <u>compounds</u> (group of atoms bonded together) to become stable by having a <u>full valence shell</u>.
 - **Ionic compound**: formed when atoms <u>gain or lose</u> <u>electrons</u> (e.g. NaCl, K₂O)
 - Covalent compound: formed when atoms share electrons (e.g. CO_2 , H_2O_2)

1 + H Hydrogen 1.0									MET	als ←		 	→ NO	ON-MET	ALS	1 – H Hydrogen 1.0	18 2 0 He Helium
1 3 + Li Lithium 6.9	2 4 2+ Be Beryllium 9.0				Atom Symb Name Atom	ic Number ool e ic Mass	→ 22 → Ti → Titar → 47.	4+ 3+ ← 9	– Ion charg	e(s)		13 5 B Boron 10.8	14 6 C Carbon 12.0	15 7 3– N Nitrogen 14.0	16 8 2- 0 _{Oxygen} 16.0	17 9 – F Fluorine 19.0	4.0 10 0 Ne Neon 20.2
11 + Na Sodium 23.0	12 2+ Mg Magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 3+ Al Aluminium 27.0	14 Si Silicon 28.1	15 3- P Phosphorus 31.0	16 2- S Sulfur 32.1	17 – CI Chlorine 35.5	18 0 Ar Argon 39.9
19 + K Potassium 39.1	20 2+ Ca Calcium 40.1	21 3+ Sc Scandium 45.0	22 4+ Ti 3+ Titanium 47.9	23 5+ V 4+ Vanadium 50.9	24 3+ Cr 2+ Chromium 52.0	25 2+ Mn 3+ ₄₊ Manganese 54.9	26 3+ Fe 2+ Iron 55.8	27 2+ Co 3+ Cobalt 58.9	28 2+ Ni 3+ Nickel 58.7	29 2+ Cu 1+ 63.5	30 2+ Zn ^{Zinc} 65.4	31 3+ Ga Gallium 69.7	32 4+ Ge Germanium 72.6	33 3– As Arsenic 74.9	34 2 See Selenium 79.0	35 – Br Bromine 79.9	36 0 Kr Krypton 83.8
37 + Rb Rubidium 85.5	38 2+ Sr Strontium 87.6	39 3+ Y Yttrium 88.9	40 4+ Zr Zirconium 91.2	41 3+ Nb Niobium 92.9	42 2+ Mo ³⁺ Molybdenum 95.9	43 7+ Tc Technetium (98)	44 3+ Ru 4+ Ruthenium 101.1	45 3+ Rh Rhodium 102.9	46 2+ Pd 4+ Palladium 106.4	47 + Ag Silver 107.9	48 2+ Cd Cadmium 112.4	49 3+ In Indium 114.8	50 4+ Sn 2+ Tin 118.7	51 3+ Sb 5+ Antimony 121.8	52 2- Te Tellurium 127.6	53 – I ^{Iodine} 126.9	54 0 Xe Xenon 131.3
55 + Cs Cesium 132.9	56 2+ Ba Barium 137.3	57 3+ La Lanthanum 138.9	72 4+ Hf Hafnium 178.5	73 5+ Ta Tantalum 180.9	74 6+ W Tungsten 183.8	75 4+ Re Rhenium 186.2	76 3+ Os ^{Osmium} 190.2	77 3+ Ir 4+ Iridium 192.2	78 4+ Pt ²⁺ Platinum 195.1	79 3+ Au ¹⁺ _{Gold} 197.0	80 2+ Hg 1+ Mercury 200.6	81 1+ TI 3+ Thallium 204.4	82 2+ Pb 4+ Lead 207.2	83 3+ Bi ⁵⁺ Bismuth 209.0	84 2+ Po Potonium (209)	85 – At Astatine (210)	86 0 Rn Radon (222)
87 + Fr Francium (223)	88 2+ Ra Radium (226)	89 3+ Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (263)	107 Bh Bohrium (262)	108 Hs Hassium (265)	109 Mt Meitnerium (266)	110 Ds Darmstadtium (281)	111 Rg Roentgenium (272)	112 Uub Ununbium (285)	113 Uut ^{Ununtrium} (284)	114 Uuq Ununquadium (289)	115 Uup Ununpentium (288)	116 Uuh Ununhexium (292)	117 Uus Ununseptium (?)	118 Uuo Ununoctium (294)
Alkali Metals	Alkaline Earth Metals		\mathcal{N}													Halogens	Noble Gases
Based on r	mass of C-1	12 at 12.00.		58 3+ Ce 4+ Cerium 140.1	59 3+ Pr 4+ Praseodymium 140.9	60 3+ Nd Neodymium 144.2	61 3+ Pm Promethium (145)	62 3+ Sm 4+ Samarium 150.4	63 3+ Eu 2+ Europium 152.0	64 3+ Gd Gadolinium 157.3	65 3+ Tb Terbium 158.9	66 3+ Dy Dysprosium 162.5	67 3+ Ho Holmium 164.9	68 3+ Er Erbium 167.3	69 3+ Tm Thulium 168.9	70 3+ Yb 2+ Ytterbium 173.0	71 3+ Lu Lutetium 175.0
Any value i is the mass stable or be	in parenthe s of the mos est known i which do no	ses st sotope for t occur pat	urally.	90 4+ Th Thorium 232 0	91 5+ Pa 4+ Protactinium 231 0	92 6+ U 4+ Uranium 238 0	93 5+ Np 3+ Neptunium 6+ (237)	94 4+ Pu 6+ 3+ Putonium 5+ (244)	95 3+ Am 4+ 5+ Americium6+	96 3+ Cm Curium (247)	97 3+ Bk 4+ Berkelium (247)	98 3+ Cf Californium (251)	99 3+ Es Einsteinium (252)	100 3+ Fm Fermium (257)	101 2+ Md 3+ Mendelevium (258)	102 2+ No 3+ Nobelium (259)	103 3+ Lr Lawrencium (262)

Valence electrons can explain reactivity.

The <u>closer</u> an atom is to a full valence shell, the more <u>reactive</u> it is.

Alkali metals and halogens extremely reactive.

Alkaline earth metals and Group 16 elements are very reactive.

Valence electrons can explain reactivity.

Noble gases already have a <u>full valence</u> <u>shell</u>: they do not react with other elements.

HELIUM WALKS INTO A BAR. BARTENDER SAYS, "WE DON'T SERVE NOBLE GASES HERE." He DOES NOT REACT.

Identify the following as **atoms/pure elements**, **ions**, or **compounds**.

BONUS: identify any cations, anions, and polyatomic ions.

1.	Na	7. H ₂	$13.Ca(OH)_{2}$	$19.MgO_2$
2.	TiCl ₃	8. Fe	14.Mn	20.Pt ⁴⁺
3.	CH ₄	9. O ²⁻	15.HSO ₄ -	21.Be
4.	Cu	10.I ₂	16.Cu+	$22.ClO_2^{-1}$
5.	Fe ³⁺	11.Ni(OH) ₃	17.VS ₂	23.CCl ₄
6.	H_2O	12.Mg	18.NO	24.Cl ₂

Identify the following as **atoms/pure elements**, **ions**, or **compounds**.

BONUS: identify any cations, anions, and polyatomic ions.

1.	Na	7. H ₂	$13.Ca(OH)_{2}$	19.MgO ₂
2.	TiCl ₃	8. Fe	14.Mn	20.Pt ⁴⁺
3.	CH ₄	9. 0 ²⁻	15.HSO ₄ -	21.Be
4.	Cu	10.I ₂	16.Cu+	22.ClO ₂ -
5.	Fe ³⁺	$11.Ni(OH)_3$	17.VS ₂	23.CCl ₄
6.	H ₂ O	12.Mg	18.NO	24.Cl ₂

Cations: Fe³⁺, Cu⁺, Pt⁴⁺. Anions: O²⁻, HSO₄⁻, ClO₂⁻. Polyatomic: HSO₄⁻, ClO₂⁻

Counting Atoms

See "AcCounting for Atoms" worksheet and answer key.

Bohr Models

(textbook pgs ~120-124)

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - <u># protons, # neutrons</u>
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: <u>2, 8, 8, 18</u>
 - (Except in first shell), electrons are filled *starting at top*, going *clockwise*, singly at first then paired
- 4. lons only:
 - Add <u>square brackets</u> and <u>ion charge</u> from periodic table

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	<i>rounded</i> atomic mass minus atomic number	atomic number
lon	atomic number	<i>rounded</i> atomic mass minus atomic number	atomic number minus ionic charge
A S N A	tomic Numbe ymbol ame tomic Mass	$r \longrightarrow 22 4+ \\ \longrightarrow Ti 3+ \\ \longrightarrow \text{Titanium} \\ \longrightarrow 47.9$	- Ion charge(s)

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons			
Atom	atomic number	<i>rounded</i> atomic mass minus atomic number	atomic number			
lon	atomic number	<i>rounded</i> atomic mass minus atomic number	atomic number minus ionic charge			
Atomic Number \longrightarrow 22 4+ Symbol \longrightarrow Ti 3+ \longrightarrow Ion charge(s)						

Titanium

47.9

Name

Atomic Mass

			р	n	е
1	11 + Na	Na	11	23-11=12	11
9	Sodium 23.0	Na+	11	23-11=12	11-(+1)=10
1	12 2+ Mg	Mg	12	24-12=12	12
N 2	Magnesium 24.3	Mg ²⁺	12	24-12=12	12-(+2)=10
8	3 2- 0	0	8	16-8=8	8
•	Dxygen 16.0	O ²⁻	8	16-8=8	8-(-2)=10
•	17 – CI	Cl	17	36-17=19	17
(Chlorine 35.5	Cl-	17	36-17=19	⁸ 8

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled *starting at top*, going *clockwise*, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е
Na	11	23-11=12	11

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е
Cl	17	36-17=19	17

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е
0	8	16-8=8	8

Example: oxygen atom

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:

 O^{2-}

р

8

• Add square brackets and ion charge from periodic table

n

16-8=8

Example: oxygen ion

Note: subtracting a negative is the same as adding.

е

8-(-2)=10

- 1. Calculate the number of protons, neutrons, electrons.
- 2. In the nucleus:
 - Element symbol
 - # protons, # neutrons
- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: 2, 8, 8, 18
 - (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired
- 4. lons only:
 - Add square brackets and ion charge from periodic table

	р	n	е
Mg ²⁺	12	24-12=12	12-(+2)=10

Example: magnesium ion

Ion Formation

Warm-up: Draw the Bohr models of the nitrogen atom and the nitrogen ion.

nitrogen atom (neutral)

nitrogen ion (3- charge)

Where do these extra electrons come from?

Ion Formation

- Atoms form ions to have a **full valence shell**, just like the noble gases have.
- Electrons are negatively charged. When electrons are added, atoms become **negatively charged anions**. When electrons are taken away, atoms become **positively charged cations**.

Ionic Compound Formation

Ionic Compound Formation

Ionic compound:

- Forms when **electrons are** <u>transferred</u> from one atom to another
- Involves a <u>cation</u> (usually metal) and an <u>anion</u> (usually non-metal) being chemically bonded together
- Examples of ionic compounds:
 - MgCl₂
 - KBr
 - Ti₂O₃
 - Mg(ClO₃)₂

Ionic Compound Formation (NaCl)

sodium atom (neutral)

chlorine atom (neutral)

In order to get full valence shells:

- Na needs to **lose 1** electron.
- Cl needs to gain 1 electron.

Ionic Compound Formation (NaCl)

This ionic compound is **NaCl** (sodium chloride). It has one Na⁺ ion and one Cl⁻ ion.

Ionic Compound Formation (Li₂O)

lithium atom (neutral)

oxygen atom (neutral)

• Li needs to **lose 1** electron.

• O needs to gain 2 electrons.

<u>Problem</u>: Electron numbers not balanced.

<u>Solution</u>: The compound needs two lithium ions!

Ionic Compound Formation (Li₂O)

lithium atom (neutral)

3p, 4n

oxygen atom (neutral)

lithium atom (neutral)

Ionic Compound Formation (Li₂O)

This ionic compound is Li_2O (lithium oxide). It has two Li⁺ ions and one O²⁻ ion.

Bohr Models of Compounds

(textbook pgs ~120-124)

Bohr Models of Ionic Compounds

- 1. Determine how many of each ion is in the compound, from the subscripts.
- 2. Use the periodic table to find the ionic charge of each ion.
- 3. Draw the Bohr models of all the ions in the compound. (They should all have full valence shells.)

Practice:

a) MgCl₂

Bohr Models of Ionic Compounds

MgCl₂

Covalent Compound Formation

Covalent compounds form when two (or more) non-metal atoms share electrons.

This covalent compound is H₂O (water or dihydrogen monoxide). It has two hydrogen atoms and one oxygen atom.

Covalent Compound Formation

• Covalent compounds form when two (or more) **non-metal** atoms **share electrons**.

This covalent compound is CO_2 (carbon dioxide). It has one carbon atom and two oxygen atoms.

Total: 4 bonding pairs, 4 lone pairs

Bohr Models of Covalent Compounds

- 1. Determine how many of each atom is in the compound, from the subscripts.
- 2. Draw the Bohr models of the atoms. 'Guess and check' what covalent bonds between valence electrons will cause all atoms to have a full valence shell.
- 3. Redraw the Bohr model, showing the covalent bonds. Practice:
- a) CH₄

Bohr Models of Covalent Compounds

Bohr Models of Covalent Compounds

Practice: b) N₂

Introducing Lewis Structures

Bohr Model

- All electrons
- All energy shells
- Shows protons and neutrons
- Shows a lot of information, but is clunky and time-consuming

Lewis Structure

- Only **valence** electrons (except cations)
- Outermost shell only
- Protons and neutrons ignored
- Good at determining bonding in a covalent compound

Introducing Lewis Structures

Lewis Structures of Atoms

Valence Electrons in Each

1		G	ro	up)						,	1	2
1	2							3	4	5	6	7	8
1	2							3	4	5	6	7	8
1	2							3	4	5	6	7	8
1	2							3	4	5	6	7	8
1	2							3	4	5	6	7	8
1	2							3	4	5	6		

Look at the last digit of the group #. Exception: hydrogen and helium.

Lewis Structures of Atoms

- 1. Write element symbol (capitalization matters!)
- 2. Draw valence electrons around, using the same positions as the Bohr model (i.e. clockwise, unpaired at first then paired)

Lewis Structures of Ions and Ionic Compounds

Cation:

- Element symbol
- No electrons
- Square brackets and charge

[Na]¹⁺

Anion:

- Element symbol
- Full valence shell
- Square brackets and charge

Lewis Structures of Ions and Ionic Compounds

Practice. Draw the Lewis structures for the following:

a) NaCl
$$\begin{bmatrix} Na \end{bmatrix}^{1+} \begin{bmatrix} : \ddot{C}I : \end{bmatrix}^{1-}$$

b) MgCl₂ $\begin{bmatrix} Mg \end{bmatrix}^{2+} \begin{bmatrix} : \ddot{C}I : \end{bmatrix}^{1-} \begin{bmatrix} : \ddot{C}I : \end{bmatrix}^{1-}$
c) CaH₂ $\begin{bmatrix} Ca \end{bmatrix}^{2+} \begin{bmatrix} \ddot{H} \end{bmatrix}^{1-} \begin{bmatrix} \ddot{H} \end{bmatrix}^{1-}$
d) AlF₃ $\begin{bmatrix} AI \end{bmatrix}^{3+} \begin{bmatrix} : \ddot{F} : \end{bmatrix}^{1-} \begin{bmatrix} : \ddot{F} : \end{bmatrix}^{1-} \begin{bmatrix} : \ddot{F} : \end{bmatrix}^{1-}$

Rule 1: All valence electrons must be used.

Rule 2: All atoms must have a **full valence shell.**

- 1. Draw the Lewis structure of each atom.
- 2. Determine how many bonds each atom "needs" to complete its valence shell.
- 3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Rule 1: All valence electrons must be used.

Rule 2: All atoms must have a **full valence shell.**

Example: H₂O

- Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
- 2. Determine how many bonds each atom "needs" to complete its valence shell.
- 3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Rule 1: All valence electrons must be used.

Rule 2: All atoms must have a **full valence shell.**

Example: NH₃

- Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
- 2. Determine how many bonds each atom "needs" to complete its valence shell.
- 3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Each H needs 1 bond; N needs 3 bonds.

Total e = 8

1 lone pair; 3 bonding pairs

Rule 1: All valence electrons must be used.

Rule 2: All atoms must have a **full valence shell.**

Example: CO₂

- Draw the Lewis structure of each atom. (Count how many electrons you have in total; write this down.)
- 2. Determine how many bonds each atom "needs" to complete its valence shell.
- 3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

C needs 4 bonds; each O needs 2 bonds.

Total e = 16

This is a double bond. It represents two bonding pairs of electrons.

4 lone pairs; 4 bonding pairs

Try drawing the following covalent compounds!

- HF
- PF₃
- CH₄
- N₂ *
- CH₂O
- CO₂H₄ (challenge)

*Technically, N₂ is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

Try drawing the following covalent compounds!

*Technically, N₂ is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.