Chemical Compounds

Bond Formation, Nomenclature, and Modelling

Overview

Review: atoms and subatomic particles, ions
Modelling Atoms and Compounds

- Counting Atoms
- Bohr Models
- Lewis Diagrams

IUPAC Naming and Writing Formulas
Balanced Chemical Equations

Section 1: Review

 I
Review

1. Why do compounds form?
2. How do you draw the Bohr model for an atom? Ion?
3. What is a valence shell? Valence electron?
4. On the periodic table, where are the metals and nonmetals? What is the difference?
5. Which of these compounds are ionic? Covalent? What's the difference?
6. How do you name ionic compounds?

Review: Atoms and Subatomic Particles

Atom:

- Smallest unit of matter
- No electric charge (neutral)
- Examples:
- Na (sodium atom)
- O (oxygen atom)

Review: Atoms and Subatomic Particles

Proton: positively charged particle in the nucleus of an atom; has a mass of 1
Neutron: uncharged particle in the nucleus of an atom; has a mass of 1 Electron: negatively charged
particle in energy shell surrounding the nucleus of the atom; very tiny (mass of $\underline{\mathbf{0}}$)

(1) Proton

- Neutron
© Electron

Review: Atoms and Subatomic Particles

	\# protons	\# neutrons	\# electrons
atom (neutral)	atomic number	rounded atomic mass minus atomic number	atomic number

Review: Atoms and Subatomic Particles

For an atom:

- \# protons = atomic number
- \# electrons = atomic number

- \# neutrons =
rounded atomic mass - atomic number

If the tenths place is a 4 or lower, round down.	$32.1 \rightarrow 32$	$65.4 \rightarrow 65$
If the tenths place is a 5 or higher, round up.	$10.8 \rightarrow 11$	$35.5 \rightarrow 36$

Review: Atoms and Subatomic Particles

As a class, calculate the number of protons, neutrons, and electrons for the following atoms:

- Al
- Mg
- B
- Ti

Practice: Atoms and Subatomic Particles

1) Complete the following table.

atom	\# protons	\# neutrons	\# electrons
Ca	20	20	20
F	9	10	9
Cl	17	19	17
Ar	18	22	18
Zn	30	35	30

Consider the following (not on your sheet) :
2) Why are the number of protons and electrons the same for an atom? (Hint: what is the charge on an atom?)
3) Explain why you need to subtract atomic number from atomic mass to calculate the number of neutrons in an atom.

Review: Ions

Ion: an atom or molecule with an electric charge; formed by gaining or losing electrons

Examples:

- $\mathbf{N a}^{+}$(sodium ion with $1+$ charge)
- $\mathbf{O}^{\mathbf{2 -}}$ (oxygen ion with 2 - charge)

Review: Ions

The Periodic Table tells you which ion(s) an atom can form.

- Cation: positively charged ion (e.g. $\mathrm{Ca}^{2+}, \mathrm{Cr}^{3+}, \mathrm{NH}_{4}^{+}$); forms when electrons are lost
- Anion: negatively charged ion (e.g. $\mathrm{N}^{3-}, \mathrm{S}^{2-}, \mathrm{PO}_{4}{ }^{3-}$); forms when electrons are gained

16	$2-$
S	
Sulfur	
32.1	

multivalent metals can form more than one ion; example: titanium

| 10 0
 Ne
 Neon
 20.2 | 6
 \mathbf{C}
 Carbon
 12.0 |
| :--- | :--- | :--- |

carbon and neon do not form ions

Review: Ions

CATIONs: positive ions, protons $>$ electrons
Cis are HAPPY.

AnIons: negative ions, protons < electrons
(onion)
\therefore Onions make you cry (negative).

Review: Atoms and Subatomic Particles

	\# protons	\# neutrons	\# electrons
atom (neutral)	atomic number	rounded atomic mass minus atomic number	atomic number
ion (charged)			atomic number minus ion charge

Review: Ions

For an ion:

- \# protons = atomic number
- \# electrons = atomic number - ion charge
- \# neutrons = rounded atomic mass - atomic number

Practice: Ions

	\# protons	\# neutrons	\# electrons	Cation or Anion?
Mg^{2+}	12	12	10	cation
$\mathrm{Ti}^{\mathbf{+}}$	22	26	19	cation
O^{2-}	8	8	10	anion
As^{3-}	33	42	36	anion
phosphorus ion	15	16	18	anion
lithium ion	3	4	2	cation
manganese(IV) ion	25	30	21	cation
cobalt(III) ion	27	32	24	cation

Polyatomic lons

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions		Negative Ions
$\mathrm{NH}_{4}{ }^{+}$Ammonium	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	Acetate
	$\mathrm{CO}_{3}{ }^{2-}$	Carbonate
	$\mathrm{ClO}_{3}{ }^{-}$	Chlorate
	$\mathrm{ClO}_{2}{ }^{-}$	Chlorite
	$\mathrm{CrO}_{4}{ }^{2-}$	Chromate
	CN^{-}	Cyanide
	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Dichromate
	$\mathrm{HCO}_{3}{ }^{-}$	Hydrogen carbonate, bicarbonate
	HSO_{4}^{-}	Hydrogen sulfate, bisulfate
	Le-	L...tunamen ...1fidn hi...1fidn

A polyatomic ion is a group of covalently bonded atoms with a charge.
E.g. NH_{4} (nitrogen tetrahydride) can lose an electron to become NH_{4}^{+} (ammonium ion)

Practice: Atoms and Ions

3. Why do atoms and ions have the same number of protons and neutrons, but different numbers of electrons?
4. Why do ions never have the same number of protons as electrons?
5. To form an anion, does an atom have to gain or lose electrons? Why?
6. When a calcium atom becomes an ion, does it have to gain or lose electrons? How many?

Practice: Atoms and Ions

7. Is the chlorine ion a cation or an anion? Does it form by gaining or losing electrons?
8. Is Cr^{3+} a cation or anion?
9. Does arsenic form an ion by gaining or losing electrons? How many? How do you know?
10. Why do we call manganese a multivalent element? List 3 other multivalent elements.

Practice: Atoms and Ions

	\# protons	\# neutrons	\# electrons	Type (Atom, Cation, or Anion?)
N	7	7	7	atom
$\mathrm{Br} \mathbf{}^{-}$	35	45	36	anion
Zn^{2+}	30	35	28	cation
Li	3	4	3	atom
aluminum	13	14	13	atom
calcium ion	20	20	18	cation
nickel(III) ion	28	31	25	cation
potassium	19	20	19	atom

Section 2: Modelling
 Atoms and Compounds

Modelling Atoms and Compounds

- Introduction to Chemical Compounds
- Counting Atoms
- Bohr Models of Atoms, Ionic Compounds, and Covalent Compounds
- Lewis Diagrams of Atoms, Ionic Compounds, and Covalent Compounds

Introduction to Chemical Compounds

What are compounds? Why do they form? (textbook pgs $\sim 120-124$)

Achieving Stability Through Nobility

- The valence shell is the outermost shell containing electrons. Electrons in this shell are called valence electrons.
- A stable atom has a full valence shell.

Achieving Stability Through Nobility

- The valence shell is the outermost shell containing electrons. Electrons in this shell are called valence electrons.
- A stable atom has a full valence shell.
- Atoms react to form compounds (group of atoms bonded together) to become stable by having a full valence shell.
- Ionic compound: formed when atoms gain or lose electrons (e.g. $\mathrm{NaCl}, \mathrm{K}_{2} \mathrm{O}$)
- Covalent compound: formed when atoms share electrons (e.g. $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$)

Achieving Stability Through Nobility

Valence electrons can explain reactivity.

The closer an atom is to a full valence shell, the more reactive it is.

Alkali metals and halogens extremely reactive.

Alkaline earth metals and Group 16 elements are very reactive.

Achieving Stability Through Nobility

HELIUM WALKS INTO A BAR. bartender says, "We don't serve NOBLE GASES HERE."

He DOES NOT REACT.

Valence electrons

 can explain reactivity.Noble gases already have a full valence shell: they do not react with other elements.

Practice

Identify the following as atoms/pure elements, ions, or compounds.
BONUS: identify any cations, anions, and polyatomic ions.

1. Na	7. H_{2}	13.Ca(OH)	$19 \cdot \mathrm{MgO}_{2}$
2. TiCl_{3}	8. Fe	$14 \cdot \mathrm{Mn}$	$20 \cdot \mathrm{Pt}^{4+}$
3. CH_{4}	9. O^{2-}	$15 \cdot \mathrm{HSO}_{4}^{-}$	$21 \cdot \mathrm{Be}^{-}$
4. Cu	$10 \cdot \mathrm{I}_{2}$	$16 \cdot \mathrm{Cu}^{+}$	$22 \cdot \mathrm{ClO}_{2}^{-}$
5. Fe^{3+}	$11 \cdot \mathrm{Ni}(\mathrm{OH})_{3}$	$17 \cdot \mathrm{VS}_{2}$	$23 \cdot \mathrm{CCl}_{4}$
6. $\mathrm{H}_{2} \mathrm{O}$	12. Mg	$18 . \mathrm{NO}$	$24 \cdot \mathrm{Cl}_{2}$

Practice

Identify the following as atoms/pure elements, ions, or compounds.
BONUS: identify any cations, anions, and polyatomic ions.

1. Na	7. H_{2}	13. $\mathrm{Ca}(\mathrm{OH})_{2}$	19. MgO_{2}
2. TiCl_{3}	8. Fe	14.Mn	20.Pt ${ }^{4+}$
3. CH_{4}	9. O^{2-}	$15 . \mathrm{HSO}_{4}^{-}$	21.Be
4. Cu	$10 . \mathrm{I}_{2}$	16.Cu ${ }^{+}$	22. $\mathrm{ClO}_{2}{ }^{-}$
5. Fe^{3+}	11.Ni(OH) ${ }_{3}$	17.VS 2	23.CCl 4
6. $\mathrm{H}_{2} \mathrm{O}$	12.Mg	18.NO	24. Cl_{2}

Cations: $\mathrm{Fe}^{3+}, \mathrm{Cu}^{+}, \mathrm{Pt}^{4+}$. Anions: $\mathrm{O}^{2}, \mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{2}^{2}$. Polyatomic: $\mathrm{HSO}_{4}^{-}, \mathrm{ClO}_{2}^{-}$

Counting Atoms

See "AcCounting for Atoms" worksheet and answer key.

Bohr Models

(textbook pgs ~120-124)

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, $\mathbf{1 8}$
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number	rounded atomic mass minus atomic number	atomic number
Ion	atomic number	rounded atomic mass minus atomic number	atomic number minus ionic charge

Atomic Number Symbol Name Atomic Mass	22 $4+$ Ti $3+$ Titanium 47.9

		p	n	e
11	Na			
Sodium	Na^{+}			
$12{ }^{2+}$				
Mg	Mg			
24.3	Mg^{2+}			
$\begin{array}{ll} 8 \\ 0^{2-} \end{array}$	O			
oxysen				
16.0	O^{2-}			
${ }_{\text {cl }}^{17}$ -	Cl			
Crinime 35.5	Cl^{-}			

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.

	protons	neutrons	electrons
Atom	atomic number rounded atomic mass minus atomic number	atomic number	
Ion	atomic number	rounded atomic mass minus atomic number	atomic number minus ionic charge

Atomic Number Symbol Name Atomic Mass	22 $4+$ Ti $3+$ Titanium 47.9

		p	n	e
11 Na Sodium 23.0	Na	11	23-11=12	11
	Na^{+}	11	23-11=12	$11-(+1)=10$
\qquad	Mg	12	$24-12=12$	12
	Mg^{2+}	12	$24-12=12$	$12-(+2)=10$
$\begin{array}{ll} 8 & 2- \\ 0 & \\ \text { oxygen } \\ 16.0 \end{array}$	\bigcirc	8	$16-8=8$	8
	O^{2-}	8	$16-8=8$	$8-(-2)=10$
$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	Cl	17	$36-17=19$	17
	Cl^{-}	17	$36-17=19$	18

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: $2,8,8,18$
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Na	11	$23-11=12$	11

Example: sodium atom

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Cl	17	$36-17=19$	17

Example: chlorine atom

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
0	8	$16-8=8$	8

Example: oxygen atom

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
O^{2-}	8	$16-8=8$	$8-(-2)=10 \quad$

Example: oxygen ion

Note: subtracting a negative is the same as adding.

Drawing Bohr Models of Atoms and Ions

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:

- Element symbol
- \# protons, \# neutrons

3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside: 2, 8, 8, 18
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add square brackets and ion charge from periodic table

	p	n	e
Mg^{2+}	12	$24-12=12$	$12-(+2)=10$

Example: magnesium ion

Ion Formation

Warm-up: Draw the Bohr models of the nitrogen atom and the nitrogen ion.

nitrogen atom (neutral)

nitrogen ion (3- charge)

Where do these extra electrons come from?

Ion Formation

- Atoms form ions to have a full valence shell, just like the noble gases have.
- Electrons are negatively charged. When electrons are added, atoms become negatively charged anions. When electrons are taken away, atoms become positively charged cations.

Ionic Compound Formation

Ionic Compound Formation

Ionic compound:

- Forms when electrons are transferred from one atom to another
- Involves a cation (usually metal) and an anion (usually non-metal) being chemically bonded together
- Examples of ionic compounds:
- MgCl_{2}
- KBr
- $\mathrm{Ti}_{2} \mathrm{O}_{3}$
- $\mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2}$

Ionic Compound Formation (NaCl)

sodium atom (neutral)

chlorine atom (neutral)

In order to get full valence shells:

- Na needs to lose 1 electron.
- Cl needs to gain 1 electron.
| Ionic Compound Formation (NaCl)

This ionic compound is NaCl (sodium chloride). It has one Na^{+}ion and one Cl^{-}ion.

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

lithium atom (neutral)

oxygen atom (neutral)

- Li needs to lose 1 electron.
- O needs to gain 2 electrons.

Problem: Electron

numbers not balanced.
Solution: The compound needs two lithium ions!

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

lithium atom (neutral)

oxygen atom (neutral)

lithium atom (neutral)

Ionic Compound Formation ($\mathrm{Li}_{2} \mathrm{O}$)

This ionic compound is $\mathrm{Li}_{2} \mathrm{O}$ (lithium oxide). It has two Li^{+}ions and one O^{2-} ion.

Bohr Models of Compounds

(textbook pgs ~120-124)

Bohr Models of Ionic Compounds

1. Determine how many of each ion is in the compound, from the subscripts.
2. Use the periodic table to find the ionic charge of each ion.
3. Draw the Bohr models of all the ions in the compound. (They should all have full valence shells.)

Practice:
a) MgCl_{2}
b) $\mathrm{Li}_{3} \mathrm{~N}$

Bohr Models of Ionic Compounds

Covalent Compound Formation

- Covalent compounds form when two (or more) non-metal atoms share electrons.

This covalent compound is $\mathrm{H}_{2} \mathrm{O}$
(water or
dihydrogen
monoxide). It has
two hydrogen
atoms and one
oxygen atom.

(These electrons are not in the valence shell. This is nota lone pair.)

Lone pair: pair of valence electrons that is not shared between atams

Bonding pair: shared pair of valence electrons in a covalent campound

Covalent Compound Formation

- Covalent compounds form when two (or more) non-metal atoms share electrons.

This covalent compound is CO_{2} (carbon dioxide).
It has one carbon atom and two oxygen atoms.

Bohr Models of Covalent Compounds

1. Determine how many of each atom is in the compound, from the subscripts.
2. Draw the Bohr models of the atoms. 'Guess and check' what covalent bonds between valence electrons will cause all atoms to have a full valence shell.
3. Redraw the Bohr model, showing the covalent bonds.

Practice:
a) CH_{4}
b) N_{2}

Bohr Models of Covalent Compounds

Practice:
a) CH_{4}

Bohr Models of Covalent Compounds

Practice:
b) N_{2}

c) $\mathrm{CO}_{2} \mathrm{H}_{4}$???

Introducing Lewis Structures

Bohr Model

- All electrons
- All energy shells
- Shows protons and neutrons
- Shows a lot of information, but is clunky and time-consuming

Lewis Structure

- Only valence electrons (except cations)
- Outermost shell only
- Protons and neutrons ignored
- Good at determining bonding in a covalent compound

Introducing Lewis Structures

	Bohr Model	Lewis Structure
Atom		$\cdot \bigodot_{\bullet}^{\bullet} \mid:$
Ionic Compound		$[\mathrm{Na}]^{1+}\left[: C_{\bullet \bullet}^{\bullet} \mid:\right]^{1}$
Covalent Compound		$: \ddot{O}=C=\stackrel{\bullet}{\bigcirc}:$

Lewis Structures of Atoms

Valence Electrons in Each

1		Group								1	2
1	2					3	4	5	6	7	8
1	2					3	4	5	6	7	8
1	2					3	4	5	6	7	8
1	2					3	4	5	6	7	8
1	2					3	4	5	6		8
1	2						4	5	6		

Lewis Structures of Atoms

1. Write element symbol (capitalization matters!)
2. Draw valence electrons around, using the same positions as the Bohr model (i.e. clockwise, unpaired at first then paired)

Practice: Draw the Lewis structures of:
a) $\mathbf{M g}$ atom $\mathbf{M g} \cdot$
c) H atom
\dot{H}
b) N atom $\cdot \ddot{\mathbf{N}}$.
d) O atom $\bullet \ddot{\boldsymbol{O}}$:

Lewis Structures of Ions and lonic Compounds

Cation:

- Element symbol
- No electrons
- Square brackets and charge

Anion:

- Element symbol $[: \mathrm{c}:]^{1}$
- Full valence shell
- Square brackets and charge

Lewis Structures of Ions and Ionic Compounds Practice. Draw the Lewis structures for the following:
a) Nail $\quad[\mathbf{N a}]^{1+}[: \ddot{\mathrm{lO}}:]^{1-}$

c) CaH_{2}
$[\mathbf{C a}]^{2+}[\boldsymbol{H}]^{1}[\ddot{\mathbf{H}}]^{1}$
d) AlF_{3}
$[\mathbf{A l}]^{3+}[: \ddot{\ddot{f}}:]^{1}$
$[: \ddot{\mathrm{F}}:]^{1+}$
$[\mathrm{E}:]^{1}$

Lewis Structures of Covalent Compounds

Rule 1: All valence electrons must be used.

Rule 2: All atoms must have a full valence shell.

1. Draw the Lewis structure of each atom.
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Lewis Structures of Covalent Compounds

Rule 1: All valence electrons must be used.
 Rule 2: All atoms must have a full valence shell.

Example: $\mathrm{H}_{2} \mathrm{O}$

1. Draw the Lewis structure of each atom (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Each H needs 1 bond; O needs 2 bonds.

Total $\mathrm{e}=8$

Lewis Structures of Covalent Compounds

Rule 1: All valence electrons must be used.
 Rule 2: All atoms must have a full valence shell.

Example: NH_{3}

1. Draw the Lewis structure of each atom (Count how many electrons you have in total; write this down.)
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

Lewis Structures of Covalent Compounds

Rule 1: All valence electrons must be used.
 Rule 2: All atoms must have a full valence shell.

Example: CO_{2}

2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rule 1 AND Rule 2.

C needs 4 bonds; each O needs 2 bonds.

Total e $=16$

This is a double bond. It represents two bonding pairs of electrons.

Lewis Structures of Covalent Compounds

Try drawing the following covalent compounds!

- HF
- PF_{3}
- CH_{4}
- $\mathrm{N}_{2}{ }^{\text {* }}$
- $\mathrm{CH}_{2} \mathrm{O}$
- $\mathrm{CO}_{2} \mathrm{H}_{4}$ (challenge)
*Technically, N_{2} is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

Lewis Structures of Covalent Compounds

Try drawing the following covalent compounds!

$\mathrm{H}-\ddot{\mathrm{F}}$:	HF (3 lone pairs; 1 bonding pair)	$\ddot{N} \equiv \ddot{N}$	N_{2}. (2 lone pairs; 3 bonding pairs)
	PF ${ }_{3}$ (10 lone pairs; 3 bonding pairs)		$\mathrm{CH}_{2} \mathrm{O}$ (2 lone pairs; 4 bonding pairs)
	CH_{4} (0 lone pairs; 4 bonding pairs)		$\mathrm{CO}_{2} \mathrm{H}_{4}$ (challenge) (4 lone pairs: 6 bonding pairs)

*Technically, N_{2} is not a compound because it is only made of one element. But, the bonds between the atoms are covalent so we can still draw its Lewis structure.

