

Overview

Review: atoms and subatomic particles, ions

Modelling Atoms and Compounds

- Counting Atoms
- Bohr Models
- Lewis Diagrams

IUPAC Naming and Writing Formulas

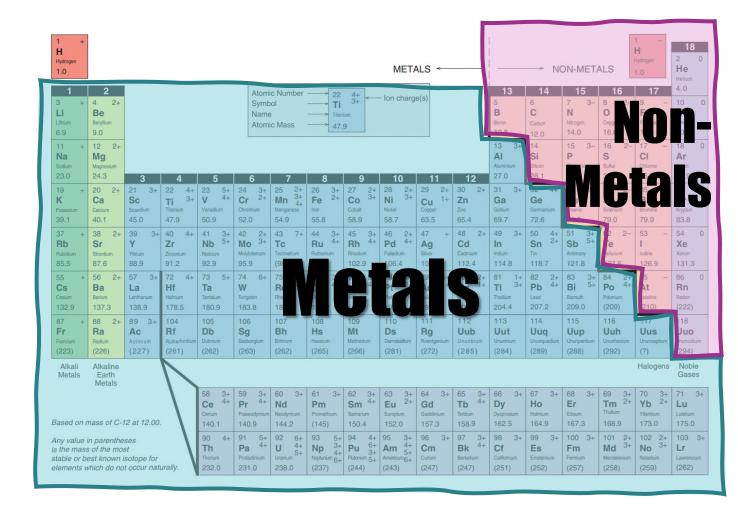
Balanced Chemical Equations

Section 3: IUPAC Nomenclature

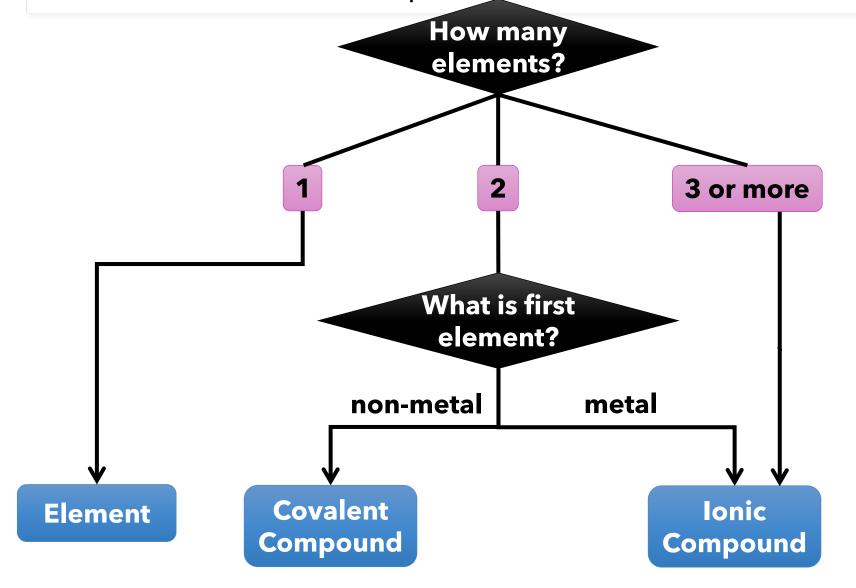
(not covered in textbook)

Chemical Nomenclature (Naming)

It is important to have *one* system to name chemical compounds. Why?


- Scientists can communicate with each other and the public, even in different languages
- Every compound has a unique name
- Information/records are accurate and consistent

IUPAC (International Union of Pure and Applied Chemistry) came up with a naming scheme that is used around the world.


Identifying Elements, Ionic Compounds, and Covalent Compounds

Identifying Elements, Ionic Compounds, Covalent Compounds

- Ionic compounds form
 when electrons are
 transferred and ions are
 formed. Usually involves
 a metal and a non metal.
- Covalent compounds
 form when two (or more)
 non-metal atoms share
 electrons.

Identifying Elements, Ionic Compounds, Covalent Compounds

In Science 9 and 10, you can use the following flowchart to tell apart elements and compounds based on their formulas.

(Note: in nature, many covalent compounds with 3+ elements exist; but we will not learn how to name them.)

The CI Conundrum

Sometimes, Cl and CI can look alike. Usually, it will refer to chlorine. Rarely, it will refer to carbon and iodine. When in doubt, ask!

NaC1

MgClO₄

 Cl_2

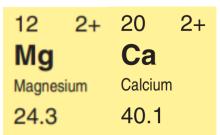
 CI_4

Identifying Elements, Ionic Compounds, Covalent Compounds

Chemical	What is it?	Chemical	What is it?
PF ₃		Mg	
CaCl ₂		NaOH	
Cl ₂		CCI ₄	
NO ₂		MgBr ₂	
Br ₂			

Naming Elements

Naming Elements

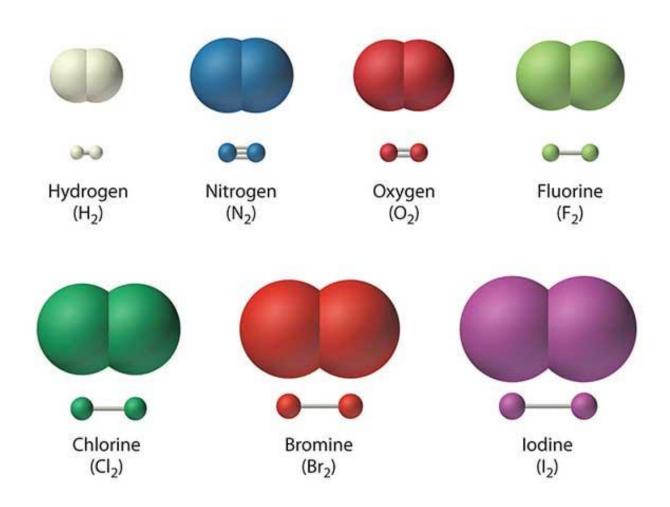

An **element** is a pure substance containing only one kind of atom.

Names of elements are found on the **periodic table**.

Ignore subscripts when naming.

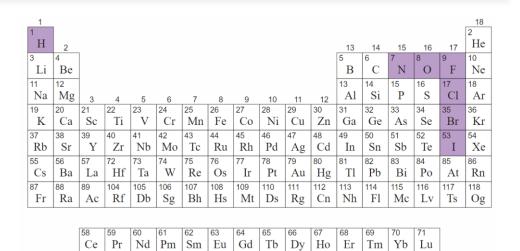
Examples:

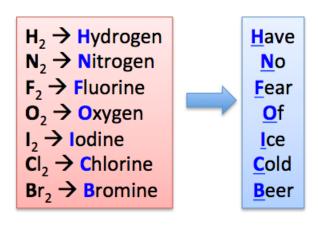
- Mg (magnesium)
- Ca (calcium)



- H₂ (hydrogen)
 Cl₂ (chlorine)

Revisiting Diatomic Elements


- When in their elemental (i.e. not in a compound) form, these elements exist as diatomic molecules: two atoms bonding covalently to fill their valence shells.
- Must memorize!



Revisiting Diatomic Elements

Memory aids:

- HIBrONCIF
- HOFBrINCl
- <u>I Have No Bright Or Clever Friends</u>
- <u>Have No Fear Of Ice Cold Beer</u>
- I Bring Cookies For Our New Home
- ...or make your own!

Np Pu Am Cm Bk Cf Es Fm

Naming Elements

1) Write the names of the following elements.

a. Na	sodium	e. O ₂	oxygen
b. Br ₂	bromine	f. Cu	copper
c. Mn	manganese	g. Ti	titanium
$d. F_2$	fluorine	h. Sr	strontium

2) Write the formulas of the following elements.

a. carbon	C	e.	iodine	I_2
b. chromium	Cr	f.	potassium	K
c. hydrogen	H_2	g.	phosphorus	Р
d. helium	Не	h.	chlorine	Cl_2

Naming Ions

(not covered in textbook)

Reference

Non-metal Element	"-ide" Ending
N , nitrogen	Nitride
O , oxygen	Oxide
F, fluorine	Fluoride
P, phosphorus	Phosphide
S , sulfur	Sulfide

Non-metal Element	"-ide" Ending
CI, chlorine	Chloride
Se , selenium	Selenide
Br , bromine	Bromide
I, iodine	lodide
H, hydrogen	Hydride

Non-metal Element	"-ide" Ending
As , arsenic *	Arsenide
Te , tellurium *	Telluride
At , astatine *	Astatide

^{*} uncommon

Different Types of Ions (Monovalent)

Monovalent ion:

- Can only make one ion (see periodic table)
- Cations: write name of element
- Anions: write name of element with "-ide" ending

Examples:

- Sodium ion = Na⁺
- Yttrium ion = Y^{3+}
- Bromide ion = Br -
- Oxide ion = O^{2}

Different Types of Ions

Multivalent Ion:

- An element that can make <u>multiple possible ions</u> (see periodic table)
- Metals only
- Must specify charge with Roman numerals

Examples:

- manganese(III) = Mn^{3+}
- manganese(IV) = Mn^{4+}
- copper(I) = Cu^+
- vanadium(V) = V^{5+}

Note: manganese and magnesium are different elements!

Different Types of Ions

Polyatomic ion:

- Group of non-metal atoms *covalently* bonded with an ionic charge
- Spelling counts!!! (Copy from table)

Examples:

- $NH_4^+ = ammonium ion$
- PO_4^{3-} = phosphate ion
- PO_3^{3-} = phosphite ion

Polyatomic Ions

Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions		Negative Ions
NH ₄ ⁺ Ammonium	CH ₃ COO ⁻	Acetate
	CO ₃ ²⁻	Carbonate
	ClO ₃ ⁻	Chlorate
	ClO ₂ ⁻	Chlorite
	CrO ₄ ²⁻	Chromate
	CN ⁻	Cyanide
	Cr ₂ O ₇ ²⁻	Dichromate
	HCO ₃ ⁻	Hydrogen carbonate, bicarbonate
	HSO ₄ ⁻	Hydrogen sulfate, bisulfate
	HS ⁻	Hydrogen sulfide, bisulfide

Positive Ions		Negative Ions
	HSO ₃ ⁻	Hydrogen sulfite, bisulfite
	OH-	Hydroxide
	ClO ⁻	Hypochlorite
	NO ₃ ⁻	Nitrate
	NO ₂ -	Nitrite
	ClO ₄ ⁻	Perchlorate
	MnO ₄ ⁻	Permanganate
	PO ₄ ³⁻	Phosphate
	PO ₃ ³⁻	Phosphite
	SO ₄ ²⁻	Sulfate
	SO ₃ ²⁻	Sulfite 19

Practise

1) Write the names of the following monovalent ions.

a. Mg ²⁺	magnesium	e. O ²	oxide	
b. S ²⁻	sulfide	f. N^3	nitride	
c. Br -	bromide	g. Na	n+ sodium	
d. K+	potassium	h. Sc	3+ scandiui	Υ

2) Write the names of the following multivalent ions.

a. Fe ²⁺	iron(II)	e. Au ³⁺	gold(III)
b. Fe ³⁺	iron(III)	f. Au ¹⁺	gold(I)
c. Cu ²⁺	copper(II)	g. Ti ⁴⁺	titanium(IV)
d. Sn ⁴⁺	tin(IV)	h. Mn ³⁺	manganese(III)

Practise

3) Write the names of the following polyatomic ions.

a. CN -	cyanide	e. HSO ₄ -	bisulfate
b. ClO ₄ -	perchlorate	f. PO ₄ ³⁻	phosphate
c. NO ₃ -	nitrate	g. OH-	hydroxide
d. MnO ₄ -	permanganate	h. NH ₄ +	ammonium

4) What is the charge of each of the following polyatomic ions?

a.	dichromate	2-	e.	sulfate	2-
b.	carbonate	2-	f.	sulfite	2-
c.	bisulfide	1-	g.	chlorite	1-
d.	phosphite	3-	h.	hydrogen carbonate	1-

Practise

5) Name each of the following ions.

```
a. Co<sup>3+</sup> cobalt(III)
b. Be<sup>2+</sup> beryllium
c. S<sup>2-</sup> sulfide
d. Cr<sup>2+</sup> chromium(II)
e. CrO<sub>4</sub><sup>2-</sup> chromate
f. P<sup>3-</sup> phosphide
g. V<sup>5+</sup> vanadium(V)
h. OH- hydroxide
```

Remember: Roman numerals for multivalent metals ONLY.

Ionic Compound Nomenclature

(not covered in textbook)

Intro to Ionic Compound Nomenclature

Cation comes first; anion comes second.

Names of ionic compounds tell you which ions are in the compound.

- e.g. "sodium chloride" has Na⁺ and Cl⁻ ions.
- e.g. "titanium(IV) dichromate" has Ti^{4+} and $Cr_2O_7^{2-}$ ions.

Chemical formulae tell you how many of each ion are in the compound, using subscripts.

- e.g. "CaCl₂" has 1 Ca²⁺ ion and 2 Cl⁻ ions.
- e.g. "Mn(OH)₂" has 1 Mn⁴⁺ ion and 2 OH⁻ ions.

- 1. Write the cation, first.
 - For metals that can only form one ion (monovalent metals), do not write the ion charge.
 - For multivalent metals, determine the ion charge through **charge balancing**. Then, put the ion charge in **Roman numerals**, in brackets.
 - If the cation is polyatomic, write it exactly the way it is written in the table.
- 2. Write the anion with **"-ide" ending** (unless it is polyatomic).

Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.

For multivalent metals, determine the ion charge through **charge balancing**. Then, put the ion charge in **Roman numerals**, in brackets.

If the cation is polyatomic, write it exactly the way it is written in the table.

2. Write the anion with "-ide" ending (unless it is polyatomic).

- 1. Write the cation, first.
- 2. Write the anion with "-ide" ending.

Chemical Formula	Periodic Table	Name
NaCl	11 + 17 Na Cl Sodium Chle 23.0 35	Drine Drine
$MgBr_2$	12 2+ 35 Mg Bi Magnesium Broi 24.3 79	r mine

Name the following ionic compounds with monovalent metals.

- a) KI potassium iodide
- b) Be₃P₂ beryllium phosphide
- c) ZnO zinc oxide
- d) BaF₂ barium fluoride
- e) AlBr₃ aluminium bromide

- 1. Write the **cation, first**.
- 2. Write the anion with "-ide" ending.

Oh no! Chromium is multivalent.
Charge balancing is used to
find the charge of a
multivalent metal ion.

Chemical Formula	Periodic Table	Name	
Cr_2O_3	24 3+ 8 Cr 2+ O	2-	???
CrO	Chromium Oxyg)	???

1. Write the cation, first.

For metals that can only form one ion (monovalent metals), do not write the ion charge.

For multivalent metals, determine the ion charge through *charge* balancing. Then, put the ion charge in *Roman numerals*, in brackets.

2. Write the anion with "-ide" ending.

Charge Balancing (to find the charge of a **multivalent** metal ion)

- 1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
- 2) Rule: The total number of **positive** charges in an ionic compound must equal the total number of **negative** charges. Determine the charge on the metal ion.
- 3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

Charge Balancing Part 1: Determining Charges of Multivalent Metals

24 3+ Cr 2+ Chromium 52.0

8 2-O Oxygen 16.0

Cr_2	O ₃ :	
1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	$Cr^{?}$ O^{2-} We know there are 2 chromium ions and 3 oxygen ions from the subscripts in the formula.	
2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 6 negative charges. Must have 6 positive to balance the charges. Divide by # of chromium ions (2). Therefore, each Cr ion must have a 3+ charge.	
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.	chromium(III) oxide	

Charge Balancing Part 1: Determining Charges of Multivalent Metals

24 3+ Cr 2+ Chromium 52.0

8 2-O Oxygen 16.0

Cr	0:		
1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	Cr? O2- ion and 1 oxygen ion from the subscripts in the formula		
2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 2 negative charges. Must have 2 positive to balance the charges. Divide by # of chromium ions (1). Therefore, each Cr ion must have a 2+ charge.		
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.	chromium(II) oxide		

Name the following ionic compounds with multivalent metals.

- a) TiO₂ titanium(IV) oxide
- b) Mo₂S₃ molybdenum(III) sulfide
- c) Hg₃P mercury(I) phosphide
- d) MnSe₂ manganese(IV) selenide
- e) SnI₂ tin(II) iodide

Name the following ionic compounds. Make sure you do charge balancing for ionic compounds with multivalent metals only.

- 1) Who wants to take a Na_3P ?
- 2) Better **FeS** up.
- 3) Is your name Be_3N_2 ?
- 4) Who **AmI**₆?
- 5) "Vegetable" in Chinese is CaI_2 .

Name the following ionic compounds. Make sure you do charge balancing for ionic compounds with multivalent metals only.

- 1) Who wants to take a Na₃P?
- 2) Better **FeS** up.
- 3) Is your name Be_3N_2 ?
- 4) What about **AmI**₆?
- 5) "Vegetable" in Chinese is CaI₂.

- sodium phosphide
- iron(II) sulfide
- beryllium nitride
- americium(VI) iodide
- calcium iodide

Naming Ionic Compounds

1. Write the cation, first.

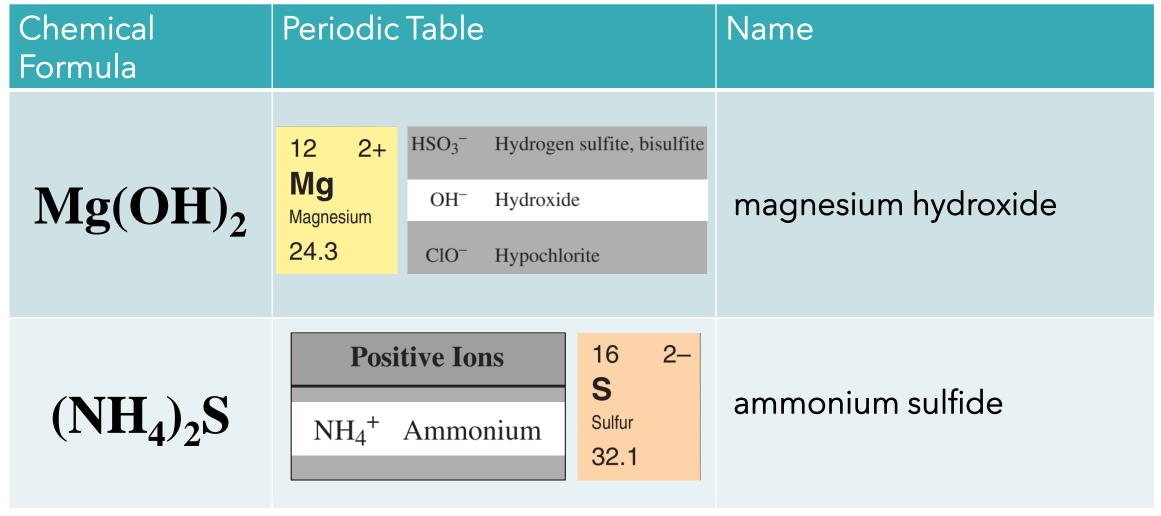
For metals that can only form one ion (monovalent metals), do not write the ion charge.

For multivalent metals, determine the ion charge through charge balancing. Then, put the ion charge in Roman numerals, in brackets.

If the cation is polyatomic, write it exactly the way it is written in the table.

2. Write the anion with "-ide" ending (unless it is polyatomic.)

Polyatomic Ions


Note: Become familiar with these names so you can recognize them quickly in the future.

NAMES, FORMULAE AND CHARGES OF SOME POLYATOMIC IONS

Positive Ions		Negative Ions
NH ₄ ⁺ Ammonium	CH ₃ COO ⁻	Acetate
	CO ₃ ²⁻	Carbonate
	ClO ₃ ⁻	Chlorate
	ClO ₂ ⁻	Chlorite
	CrO ₄ ^{2–}	Chromate
	CN ⁻	Cyanide
	$\text{Cr}_2\text{O}_7^{2-}$	Dichromate
	HCO ₃ ⁻	Hydrogen carbonate, bicarbonate
	HSO ₄ ⁻	Hydrogen sulfate, bisulfate
	HS ⁻	Hydrogen sulfide, bisulfide

Positive Ions		Negative Ions
	HSO ₃ ⁻	Hydrogen sulfite, bisulfite
	OH-	Hydroxide
	ClO-	Hypochlorite
	NO ₃ ⁻	Nitrate
	NO ₂ -	Nitrite
	ClO ₄ ⁻	Perchlorate
	MnO ₄ ⁻	Permanganate
	PO ₄ ³⁻	Phosphate
	PO ₃ ³⁻	Phosphite
	SO ₄ ²⁻	Sulfate
	SO ₃ ²⁻	Sulfite 38

Naming with Polyatomic Ions: Examples

Naming with Polyatomic Ions: Examples

Chemical Formula	Periodic Table	Name
Sc(HSO ₃) ₃	21 3+ Sc Scandium 45.0 HSO ₄ Hydrogen sulfate, bisulfate HS Hydrogen sulfide, bisulfide HSO ₃ Hydrogen sulfite, bisulfite	 scandium hydrogen sulfite OR scandium bisulfite scandium hydrogen sulfite, bisulfite

Naming with Polyatomic Ions: Examples

22 4+ Ti Titanium 47.9

 CIO_2^- Chlorite CrO_4^{2-} Chromate

Ti ₂ (Cr	$(O_4)_3$:
1) Write out all the ions you have. Leave the charge blank on the multivalent metal.	Ti? CrO ₄ ²⁻ CrO ₄ ²⁻ Ti? CrO ₄ ²⁻
2) The total number of positive charges in an ionic compound must equal the total number of negative charges. Determine the charge on the metal ion.	Total: 6 negative charges. Must have 6 positive to balance the charges. Divide by # of titanium ions (2). Therefore, each Ti ion must have a 3+ charge.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals. Spell the polyatomic ion exactly as it is spelled in the reference sheet.	titanium(III) chromate

Your Turn!

Name the following ionic compounds with polyatomic ions.

- a) $Ca(OH)_2$ calcium hydroxide
- b) $Zn(ClO_4)_2$ zinc perchlorate
- c) $(NH_4)_2O$ ammonium oxide
- d) Ti₃(PO₃)₄ titanium(IV) phosphite
- e) HgHSO₄ mercury(I) bisulfate or

mercury(I) hydrogen sulfate42

Writing Formulas of Ionic Compounds

(not covered in textbook)

Intro to Ionic Compound Nomenclature

Names of ionic compounds tell you which ions are in the compound. The cation comes first; the anion comes second.

To write a chemical formula of an ionic compound, you must find out how many of each ion is involved, through charge balancing.

Rule: The total number of positive charges in an ionic compound must equal the total number of negative charges.

Writing Formulas of Ionic Compounds (v1)

- 1. Write down each ion with its charge.
- 2. Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.
- 3. Write your formula with subscripts.

To indicate more than one of a polyatomic ion, use brackets with the subscript outside.

20 2+

Ca

Calcium

40.1

15 3–

P

Phosphorus

31.0

calcium pl	nosphide
1) Write down each ion with its charge. 2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.	Ca ²⁺ P ³⁻ Ca ²⁺ P ³⁻ Ca ²⁺
3) Write your formula with subscripts.	Ca ₃ P ₂

24 3+ 2+ Cr Chromium 52.0

HSO₃⁻ Hydrogen sulf
OH⁻ Hydroxide
ClO⁻ Hypochlorite

chromium(II) hydroxide
1) Write down each ion with its charge.	Cr ²⁺ OH-
2) Add more of the ions to balance the charges: the total number of positive and negative charges must be equal.	OH⁻
3) Write your formula with subscripts.	Cr(OH) ₂

Writing Chemical Formulas: Practice (v1)

1) Use "Version 1" to write the chemical formulas of these compounds.

a) calcium nitride Ca₃N₂

b) copper(II) iodide CuI₂

c) aluminium nitride AlN

d) manganese(IV) sulfate $Mn(SO_4)_2$

Writing Formulas of Ionic Compounds (v2)

- 1. Write down each ion with its charge.
- 2. Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.
- 3. Reduce the subscripts if both divisible by the same number.

20 2+

Ca

Calcium

40.1

15 3-

P

Phosphorus

31.0

calcium phosphide

1) Write down each ion with its charge.

2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.

3) Reduce the subscripts if both divisible by the same number.

Ca²⁺ P³⁻
Ca₃P₂

2 and 3 do not have a common factor. Therefore, Ca_3P_2 is our final answer.

24 3+ 2+ Cr Chromium 52.0

HSO₃⁻ Hydrogen sulf

OH⁻ Hydroxide

ClO Hypochlorite

chromium(II) hydroxide

1) Write down each ion with its charge.

2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.

3) Reduce the subscripts if both divisible by the same number.

Cr(OH)₂

1 and 2 do not have a common factor. Therefore, $Cr(OH)_2$ is our final answer.

12 2+ **Mg**Magnesium
24.3

CH ₃ COO ⁻	Acetate
CO_3^{2-}	Carbonate
ClO ₃ ⁻	Chlorate

magnesium carbonate

1) Write down each ion with its charge.

2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.

3) Reduce the subscripts if both divisible by the same number.

 $Mg^{2+} CO_3^{2-}$ $Mg_2(CO_3)_2$

2 and 2 are both divisible by 2. Rewrite formula as MgCO₃.

25 2+ Mn 3+ 4+ Manganese 54.9

PO₃³⁻ Phosphite

SO₄²⁻ Sulfate

SO₃²⁻ Sulfite

manganese(IV) sulfate

1) Write down each ion with its charge.

2) Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts.

 $Mn_{2}^{4+}SO_{4}^{2-}$ $Mn_{2}(SO_{4})_{4}$

3) Reduce the subscripts if both divisible by the same number.

4 and 2 are both divisible by 2. Rewrite formula as $Mn(SO_4)_2$.

Writing Chemical Formulas: Practice (v1)

2) Use "Version 2" to write the chemical formulas of these compounds.

a)	cadmium	phosphide	Cd_3P_2
------------	---------	-----------	-----------

Naming and Writing Formulas: Covalent Compounds

(not covered in textbook)

Naming Binary Covalent Compounds

Binary covalent compound: a covalent compound containing only two elements

Names and formulas of covalent compounds both tell you:

- Which elements?
- How many atoms of each element?

Example: dichlorine monoxide is Cl₂O

Prefixes Reference

PREFIXES

1	mono
2	di
3	tri
4	tetra
5	penta
6	hexa
7	hepta
8	octa
9	nona
10	deca

Arabic Numeral	Prefix	Arabic Numeral	Prefix
1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

Naming Binary Covalent Compounds

- 1. Write the first element.
- 2. Write the second element with <u>"-ide" ending</u>.
- 3. Add **prefixes** to show how many of each element there is.
 - Do not add <u>"mono-"</u> to first element.
 - If adding "mono-" to "-oxide", write "monoxide" instead.

e.g. O_2F_2	di oxygen difluoride
e.g. PF ₃	phosphorus trifluoride
e.g. N ₂ O	di nitrogen mon oxide

Note: All compound names (covalent *and* ionic) are lowercase.

More Practice: Binary Covalent Compounds

Compound Name

 S_2O_5

Cl₃O₇

CBr₂

NO

CCl₄

 P_2S_6

Naming Binary Covalent Compounds

Covalent compounds with special names (must memorize):

$$NH_3 = ammonia$$
 \leftarrow H_4^+ (ammonium ion) and NH_3 (ammonia) are **not the same!!!** $CH_4 = methane$

Chemical Formulas of Binary Covalent Compounds

- 1. Identify the elements involved. Write their **symbols**.
- 2. Use the **<u>prefixes</u>** to determine the number of each element in the compound. Write as **<u>subscripts</u>**.

```
e.g. tetraphosphorus pentaoxide P_4O_5
```

e.g. nitrogen triiodide NI₃

e.g. selenium difluoride Se F₂

More Practice: Binary Covalent Compounds

Chemical Formula

Compound Name

nitrogen trioxide

triphosphorus tetraoxide

iodine pentafluoride

tricarbon disulfide

boron trifluoride

xenon hexafluoride

Resources

- Naming and Writing Chemical Formulas
 - Tyler DeWitt Videos https://www.youtube.com/user/tdewitt451/videos
 - Mr. Carman's Blog (generates quizzes)
 https://www.kentschools.net/ccarman/cp-chemistry/practice-quizzes/compound-naming/
 - Mr. Eisley (list of other resources to practice <u>http://www.mreisley.com/nomenclature-practice.html</u>
 - ChemFiesta (worksheets with answers) <u>https://chemfiesta.org/2015/01/13/naming-worksheets/</u>
- Balancing Chemical Equations
 - TemplateLAB (explanations and many worksheets with answers) https://templatelab.com/balancing-equations-worksheet/