Chemical Compounds

Bond Formation, Nomenclature, and Modelling

Overview

Review: atoms and subatomic particles, ions
Modelling Atoms and Compounds

- Counting Atoms
- Bohr Models
- Lewis Diagrams

IUPAC Naming and Writing Formulas
Balanced Chemical Equations

Section 4: Balancing Chemical Equations

(textbook pgs 125-133)

Chemical Equation Vocabulary

Reactants: what goes

 into the reaction; on the left side of reactionarrow
$\mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Chemical Equation Vocabulary

Word equation: uses words to describe reactants and products
zinc + hydrogen chloride \rightarrow zinc chloride + hydrogen

Skeleton equation: uses chemical formulas to describe reactants and products

$$
\mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

Chemical Reaction Vocabulary

Balanced chemical equation: uses coefficients and chemical formulas to describe reactants and products in their correct proportions

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

Chemical Reaction Vocabulary (FYI only)

In chemical equations, you will sometimes see information about the state that a chemical substance is in.

$$
\mathrm{E} . \mathrm{g} .2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}
$$

(g): Gas
(I): Liquid
(s): Solid
(aq): Aqueous solution (substance is dissolved in water)

Fruit Tart Case Study

You are making fruit tarts for a party. You have a certain number of each ingredient. How many tarts can you make? What is left over?

Fruit Tart Case Study

You are making fruit tarts for a party. Unfortunately, after you are finished, you see an Instagram picture that makes you want to rearrange your fruit tarts. You need 3 finished raspberry/blackberry tarts in total. How many of each tart will you start with? What will you be left with?

Fruit Tart Case Study

You are making fruit tarts for a party. Unfortunately, after you are finished, you see an Instagram picture that makes you want to rearrange your fruit tarts. You need 3 finished raspberry/blackberry tarts in total. How many of each tart will you start with? What will you be left with?

6 raspberries each

1 blackberry each

2 raspberries + 1 blackberry each

fruitless tart

Discuss: approaches and strategies in completing this problem

Fruit Tart Case Study

$\underline{1} \mathrm{Rb}_{6} \mathrm{~T}+\underline{3} \mathrm{BbT} \rightarrow \underline{3} \mathrm{Rb}_{2} \mathrm{BbT}+\underline{1} \mathrm{~T}$

Legend
$\mathrm{Rb}=$ "raspberry" element
$\mathrm{Bb}=$ "blackberry" element
T = "tart" element

Follow-up: Now, suppose that you need 12 tarts instead of 3 . How many raspberry and blackberry tarts do you start with?

Balancing Chemical Equations

Why balance?

- Chemical "recipes": how much do you put in? how much do you expect to yield?
- Conservation of mass: no atoms are ever created or destroyed

Balancing Chemical Equations: Vocabulary

Balancing chemical formulas involves adding coefficients in front of elements and compounds until the total number of atoms of each element in the reactants equals the products.

coefficients

(balancing numbers)

Balancing Chemical Equations: Vocabulary

> Balancing chemical formulas involves adding coefficients in front of elements and compounds until the total number of atoms of each element in the reactants equals the products.

Reactants: what goes
into the reaction

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

PhET Simulation

https://phet.colorado.edu/sims/html/balancing-chemical-equations/1.1.0/balancing-chemical-equations en.html

Google: "Phet Balancing"

- Do Introduction first
- Move on to Game and progress through the levels when you are ready
- Discuss strategies you used.

Balancing Chemical Equations: Tips

- Goal: the number of atoms of each element in the reactants equals the products.
- Change coefficients only. Never add or change subscripts.
- Balance atoms in compounds first. Save elements for last.
- If the same polyatomic ion appears in the reactants and products, you can often treat it as a group of atoms instead of splitting it up.
- At the end, reduce all coefficients to lowest whole-number terms.
- Note: Do not write a coefficient if there is only "1" of that element or compound.

Balancing can be frustrating at first. Practice, practice, practice!

Balancing Examples (easy)

$$
\text { 1. __ } \mathrm{N}_{2}+\underline{3} \mathrm{H}_{2} \rightarrow \underline{2} \mathrm{NH}_{3}
$$

Note: Do not write a coefficient if there is only " 1 " of that element or compound.
2. $2 \mathrm{NaCl}+\ldots \mathrm{F}_{2} \rightarrow \underline{2} \mathrm{NaF}+\ldots \mathrm{Cl}_{2}$
3. $2 \mathrm{Ag}_{2} \mathrm{O} \rightarrow 4.4 \mathrm{Ag}+\ldots \mathrm{O}_{2}$
4. $4 \underline{P}+\underline{5} \mathrm{O}_{2} \rightarrow 2 \mathrm{P}_{2} \mathrm{O}_{5}$

Balancing Examples (medium)

5. $2 \underset{\sim}{2} \mathrm{NaBr}+\ldots \mathrm{CaF}_{2} \rightarrow 2 \mathrm{NaF}+\ldots \mathrm{CaBr}_{2}$
6. $\ldots \mathrm{FeCl}_{3}+3 \mathrm{NaOH} \rightarrow \ldots \mathrm{Fe}(\mathrm{OH})_{3}+\underline{3} \mathrm{NaCl}$
7. $\ldots \mathrm{H}_{2} \mathrm{SO}_{4}+\underline{2} \mathrm{NaNO}_{2} \rightarrow \underline{2} \mathrm{HNO}_{2}+\ldots \mathrm{Na}_{2} \mathrm{SO}_{4}$
8. $\underline{6} \mathrm{CO}_{2}+\underline{6} \mathrm{H}_{2} \mathrm{O} \rightarrow \underline{-} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\underline{6} \mathrm{O}_{2}$
9. 2 $\mathrm{HCl}+\ldots \mathrm{CaCO}_{3} \rightarrow \mathrm{CaCl}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad CO_{2}

Balancing Examples (hard)

10.__ $\mathrm{C}_{3} \mathrm{H}_{8}+\underline{5} \mathrm{O}_{2} \rightarrow \underline{3} \mathrm{CO}_{2}+\underline{4} \mathrm{H}_{2} \mathrm{O}$
11. $\underline{2} \mathrm{C}_{6} \mathrm{H}_{14}+\underline{19} \mathrm{O}_{2} \rightarrow \underline{12} \mathrm{CO}_{2}+\underline{14} \mathrm{H}_{2} \mathrm{O} \xrightarrow[\substack{\text { Make sure to balance the } \\ \text { element }\left(\mathrm{O}_{2}\right) \text { last! }}]{\substack{\text { and }}}$
12. $2 \mathrm{C}_{8} \mathrm{H}_{18}+\underline{25} \mathrm{O}_{2} \rightarrow \underline{16} \mathrm{CO}_{2}+\underline{18} \mathrm{H}_{2} \mathrm{O}$

Trick for Combustion Reactions (e.g. \#10-12)

1. Balance every atom except oxygen.

$$
\ldots \mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \underline{6} \mathrm{CO}_{2}+\underline{7} \mathrm{H}_{2} \mathrm{O}
$$

2. Find out how many oxygen atoms you need the \ldots_{2} to contribute. Divide that number by 2 . This is your temporary coefficient for O_{2}.

$$
\mathrm{C}_{6} \mathrm{CH}_{4}+\mathrm{C}
$$

3. You are not allowed to have fractional coefficients in your final answer. Multiply all the coefficients by 2 .

$$
\underline{2} \mathrm{C}_{6} \mathrm{H}_{14}+\underline{19} \mathrm{O}_{2} \rightarrow \underline{12} \mathrm{CO}_{2}+\underline{14} \mathrm{H}_{2} \mathrm{O}
$$

Resources

- Naming and Writing Chemical Formulas
- Tyler DeWitt Videos https://www.youtube.com/user/tdewitt451/videos
- Mr. Carman's Blog (generates quizzes) https://www.kentschools.net/ccarman/cp-chemistry/practice-quizzes/compound-naming/
- Mr. Eisley (list of other resources to practice http://www.mreisley.com/nomenclature-practice.html
- ChemFiesta (worksheets with answers) https://chemfiesta.org/2015/01/13/naming-worksheets/
- Balancing Chemical Equations
- TemplateLAB (explanations and many worksheets with answers) https://templatelab.com/balancing-equations-worksheet/

