NaminG GompoUnds $\mathbf{Q}_{\text {CoUntinG }}$ atoms

\qquad

Try This!

Determine the chemical formulas for the following:

Calcium + Chlorine		Silver + Hydroxide		Copper (II) + Nitrogen	
Write lons Here	Write Formula Here	Write lons Here	Write Formula Here	Write lons Here	Write Formula Here

What is in a Name?

Naming Metals (with one ion charge)

- The name of the metal ion is written \qquad
- The name is written in \qquad and spelled exactly the same as the element name ex. Al is \qquad

Naming Non-Metal Ions

- The name of the non-metal ion is written \qquad , after the metal.
- The name is written almost the same the element name except the ending is changed to
\qquad to distinguish from Polyatomic lons
ex. Cl is \qquad and O is \qquad

Naming Polyatomic lons

- Positive polyatomic ions are written \qquad . There is only one, which is \qquad .
- Negative polyatomic ions are written \qquad and the name of the ion is not changed. ex. $\mathrm{SO}_{4}{ }^{+2}$ is \qquad

Naming Multivalent Metals

- If the metal is multivalent, like Iron $\left(\mathrm{Fe}^{+2}\right.$ and $\left.\mathrm{Fe}^{+3}\right)$, the ion charge of the metal must be in the name. This charge is indicated by \qquad . ex. Cu^{+2} is \qquad and read as "

PUt it into PRactice

	IONS		NAME OF COMPOUND	FORMULA
1	K^{+1}	Cl^{-1}		
2	Na^{+1}	\mathbf{N}^{-3}		
3	Ca	OH		
4			aluminum hydroxide	
5	K	N		
6			calcium oxide	
7			sodium chloride	
8	Fe^{+2}	0		

9		iron (III) oxide	
10		magnesium phosphate	
11	$\mathrm{Fe} \mathrm{(III)}$ Cl		
12		potassium phosphate	
13		hydrogen hydroxide	
14			

The Last Bit.

A small number called a \qquad , right next to a letter, indicates the number of atoms of an element in that compound.

If the subscript is next to a \qquad then it multiples every element inside the bracket by that number.

How many atoms of each element are in the compounds below?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}
$$

