\qquad Date: \qquad Block: \qquad
SECTION 1: REVIEW
Atom:
Proton: \qquad charged particle in the \qquad of an atom; has a mass of \qquad .
Neutron: \qquad particle in the
\qquad of an atom; has a mass of \qquad .
Electron: \qquad charged particle in
\qquad surrounding the nucleus of the atom; very \qquad (mass of \qquad).

	Protons (p)	Neutrons (n)	Electrons (e)
Atom (neutral)			

Ion: an atom or molecule with an \qquad ; formed by \qquad . Examples: \qquad
The Periodic Table tells you which ion(s) an atom can form.

- Cation: \qquad charged ion (e.g. $\mathrm{Ca}^{2+}, \mathrm{Cr}^{3+}, \mathrm{NH}_{4}{ }^{+}$); forms when electrons are \qquad
(Example: magnesium atom can \qquad to form the Mg^{2+} ion)
- Anion: \qquad charged ion (e.g. $\mathrm{N}^{3-}, \mathrm{S}^{2-}, \mathrm{PO}_{4}{ }^{3-}$); forms when electrons are \qquad (Example: sulfur atom can \qquad to form the S^{2-} ion)
- Multivalent metals can form \qquad ; example: \qquad
- Carbon and neon do not form ions.
- Polyatomic ion is a \qquad of covalently bonded atoms with a charge. E.g. $\mathrm{NH}_{4}{ }^{+}$is the ammonium ion.

In-Class Practice Questions:

Subatomic Particles of Atoms			
	protons	neutrons	electrons
Al			
Mg			
B			
Ti			
Ca			
F			
Cl			
Ar			
Zn			

Subatomic Particles of Ions

	protons	neutrons	electrons	Type (Cation or Anion?)
Mg^{2+}				
Ti^{3+}				
O^{2-}				
As^{3-}				
phosphorus ion				
lithium ion				
manganese(IV) ion				
cobalt(III) ion				

More Practice:

1) Why do atoms have the same number of protons and electrons?
2) Explain why you need to subtract atomic number from atomic mass to calculate the number of neutrons in an atom.
3) Why do atoms and ions have the same number of protons and neutrons, but different numbers of electrons?
4) Why do ions never have the same number of protons as electrons?
5) To form an anion, does an atom have to gain or lose electrons? Why?
6) When a calcium atom becomes an ion, does it have to gain or lose electrons? How many?
7) Is the chlorine ion a cation or an anion? Does it form by gaining or losing electrons?
8) $\mathrm{Is}_{\mathrm{Cr}}{ }^{3+}$ a cation or anion?
9) Does arsenic form an ion by gaining or losing electrons? How many? How do you know?
10) Why do we call manganese a multivalent element? List 3 other multivalent elements.

11) Subatomic Particles of Atoms and Ions				
	protons	neutrons	electrons	Type (Atom, Cation, or Anion?)
N				
Br^{-}				
Zn^{2+}				
Li				
aluminium				
calcium ion				
nickel(III) ion				
potassium				

SECTION 2: Modelling Atoms and Compounds

Valence Shells and Compound Formation

- The valence shell is the \qquad .

Electrons in this shell are called \qquad .

- A stable atom has a full valence shell.
- Atoms react to form \qquad (groups of atoms bonded together) to become stable by having a \qquad .
- Ionic compound: formed when atoms \qquad electrons.

$$
\text { (e.g. } \mathrm{NaCl}, \mathrm{~K}_{2} \mathrm{O} \text {) }
$$

- Covalent compound: formed when atoms \qquad electrons. (e.g. $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$)
- Valence electrons can explain reactivity.
- The \qquad an atom is to a full valence shell, the more \qquad it is.
- Noble gases already have a \qquad ; they do not react with other elements.

Practice: Identify the following as atoms/pure elements, ions, or compounds. BONUS: identify any cations, anions, and polyatomic ions.

1. Na
2. H_{2}
3. $\mathrm{Ca}(\mathrm{OH})_{2}$
4. MgO_{2}
5. TiCl_{3}
6. Fe
7. Mn
8. Pt^{4+}
9. CH_{4}
10. O^{2-}
11. $\mathrm{HSO}_{4}{ }^{-}$
12. Be
13. Cu
14. I_{2}
15. Cu^{+}
16. $\mathrm{ClO}_{2}{ }^{-}$
17. Fe^{3+}
18. $\mathrm{Ni}(\mathrm{OH})_{3}$
19. VS_{2}
20. CCl_{4}
21. $\mathrm{H}_{2} \mathrm{O}$
22. Mg
23. NO
24. Cl_{2}

Bohr Models of Atoms and Ions

	p	n	e		p	n	e
Na atom				O atom			
$\mathrm{Na}^{+} \mathbf{i o n}$				$\mathrm{O}^{\mathbf{2}}$-ion			
Mg atom				Cl atom			
$\mathbf{M g}{ }^{\mathbf{2 +}}$ ion				Cl^{-}ion			

1. Calculate the number of protons, neutrons, electrons.
2. In the nucleus:
\qquad
3. Draw the electrons in energy shells:

- Max electrons per shell from inside to outside:
- (Except in first shell), electrons are filled starting at top, going clockwise, singly at first then paired

4. Ions only:

- Add \qquad and \qquad from periodic table

Example: sodium atom	Example: oxygen ion

Ion Formation and Ionic Compounds

- Atoms form ions to have a full valence shell, just like the noble gases have.
- Electrons are negatively charged. When electrons are added, atoms become negatively charged anions. When electrons are taken away, atoms become positively charged cations.
- Ionic compound:
- Forms when electrons are \qquad from one atom to another
- Involves a \qquad (usually metal) and an \qquad (usually non-metal) being chemically bonded together
- Examples of ionic compounds: \qquad

Bohr Models of Ionic Compounds

e.g. NaCl :

e.g. $\mathrm{Li}_{2} \mathrm{O}$:

1. Determine how many of each ion is in the compound, from the subscripts.
2. Use the periodic table to find the ionic charge of each ion.
3. Draw the Bohr models of all the ions in the compound, side by side. (They should all have full valence shells.)

Practice: Draw the Bohr models of the following ionic compounds.

a) MgCl_{2}	b) $\mathrm{Li}_{3} \mathrm{~N}$	

Covalent Compound Formation

- Covalent compounds form when two (or more) \qquad
\qquad
- Lone pair: pair of \qquad that is \qquad between atoms
- Bonding pair: \qquad
\qquad in a covalent compound

Bohr Models of Covalent Compounds

1. Determine how many of each atom is in the compound, from the subscripts.
2. Draw the Bohr models of the atoms. 'Guess and check' what covalent bonds between valence electrons will cause all atoms to have a full valence shell.
3. Redraw the Bohr model, showing the covalent bonds.

Practice: Draw the Bohr model of the following covalent compounds.
a) CH_{4}
*Technically, N_{2} is not a compound. But, it is an element that is covalently bonded to itself, so it can be drawn in the same way as a covalent compound.

Introducing Lewis Structures

Bohr Model

- All electrons
- All energy shells
- Shows protons and neutrons
- Shows a lot of information, but is clunky and time-consuming

Lewis Structure

- Only \qquad electrons (except cations)
- Outermost shell only
- Protons and neutrons ignored
- Good at determining bonding in a
\qquad compound

Lewis Structures of Atoms

1. Write element symbol (capitalization matters!)
2. Draw valence electrons around, using the same positions as the Bohr

		Valence Electrons in Each Group									
1											
1	2					4	5		6	7	8
1	2				3	4	45		6	7	8
1	2					4	5		6	7	8
1	2				3	4	4		6	7	8
1	2				3	4	4		6	7	8
1	2				3	4	4		6		

Practice: Draw the Lewis structures of:

a) Mg atom	b) N atom	c) H atom	d) O atom

Lewis Structures of Ions and Ionic Compounds

Cation:

- Element symbol
- No electrons
- Square brackets and charge

Anion:

- Element symbol
- Full valence shell
- Square brackets and charge

Practice: Draw the Lewis structures for the following ionic compounds:

a) NaCl	b) MgCl_{2}	c) CaH_{2}	d) AlF_{3}

Lewis Structures of Covalent Compounds

Rule 1: All \qquad .
Rule 2: All atoms must have a \qquad _.

1. Draw the Lewis structure of each atom.
2. Determine how many bonds each atom "needs" to complete its valence shell.
3. Guess and check with single, double, and triple bonds until your structure satisfies Rules 1 and 2.

Symbols Used in Lewis Structures	
Lone pair	$:$
Single bond (1 bonding pair; 2 electrons)	-
Double bond (2 bonding pairs; 4 electrons)	$=$
Triple bond (3 bonding pairs; 6 electrons)	\equiv

Example: $\mathrm{H}_{2} \mathrm{O}$	Example: NH_{3}	Example: CO_{2}

Practice: Try drawing the Lewis structures of the following covalent compounds.

HF	PF_{3}	$\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{N}_{2} *$	CH_{4}	$\mathrm{CO}_{2} \mathrm{H}_{4}$ (challenge)

SECTION 3: IUPAC NOMENCLATURE

Ionic vs Covalent Compounds

- Ionic compounds form when electrons are
\qquad and ions are formed. Usually involves a
\qquad and a \qquad -.
- Covalent compounds form when two (or more)
\qquad atoms \qquad electrons.

Draw a diagram to help you identify elements, ionic compounds, and covalent compounds based on its formula.

Practice: Identify the following as elements (E), ionic compounds (IC), or covalent compounds (CC).

Chemical	What is it?	Chemical	What is it?	Chemical	What is it?
PF_{3}		NO_{2}		NaOH	
CaCl_{2}		Br_{2}		CCl_{4}	
Cl_{2}		Mg		MgBr_{2}	

Naming Elements

An element is a pure substance containing \qquad _.
Examples:

- Mg (\qquad _)
- \qquad (calcium)
- \qquad (hydrogen)
- Cl_{2} \qquad

Names of elements are found on the \qquad . Ignore subscripts when naming.

Diatomic Elements: When in their elemental form, exist as diatomic molecules: two atoms bonding covalently to fill their valence shells.

List: \qquad
\qquad

Reference

Non-metal	"-ide" Ending	Non-metal	"-ide" Ending	Non-metal	"-ide" Ending
N, nitrogen		Cl, chlorine		As, arsenic *	
\mathbf{O}, oxygen		Se, selenium		Te, tellurium *	
F, fluorine		Br, bromine		At, astatine *	
\mathbf{P}, phosphorus		I, iodine			
S, sulfur		H, hydrogen			

Naming Ions

	What is it?	Naming	Examples	
			Ion Name	Ion Symbol
Monovalent Ion	Can only make one ion (see periodic table)	Cations: write name of element	sodium	Na^{+}
			yttrium	Y^{3+}
		Anions: write name of element with "-ide" ending	bromide	Br^{-}
			oxide	O^{2-}
Multivalent Metal Ion	Can make multiple ions (see periodic table)	Must specify charge with Roman numerals	manganese(III)	Mn^{3+}
			manganese(IV)	Mn^{4+}
			copper(I)	Cu^{+}
			vanadium(V)	V^{5+}
Polyatomic Ion	Group of non-metal atoms covalently bonded with an ionic charge	Spelling counts!!!! (Copy from table)	ammonium	$\mathrm{NH}_{4}{ }^{+}$
			phosphate	$\mathrm{PO}_{4}{ }^{3-}$
			phosphite	$\mathrm{PO}_{3}{ }^{3-}$

Practice: Complete the table with the names and chemical formulas (including charges) of the following ions. Identify as monovalent (Mono), multivalent metal (Multi), or polyatomic (Poly).

Ion Formula	Ion Name	Type
Mn ${ }^{\text {+ }}$		
K^{+}		
$\mathrm{CO}_{3}{ }^{\text {- }}$		
$\mathrm{HSO}_{4}{ }^{-}$		
Se^{2-}		
$\mathrm{NO}_{3}{ }^{-}$		
Br^{-}		
OH^{-}		
Ti^{3+}		
$\mathrm{NH}_{4}{ }^{+}$		
Mg ${ }^{2+}$		
	hypochlorite	
	sulfide	
	iodide	
	perchlorate	
	nickel(II)	
	chromium(III)	
	hydride	
	hydroxide	
	cyanide	
	gold(I)	

Naming Ionic Compounds

1) Write the \qquad , first.

- For monovalent ions, do not write the ion charge.
- For multivalent metals, determine the ion charge through \qquad .
Then, put the ion charge in \qquad
\qquad , in brackets.
- If the cation is polyatomic, write it exactly the way it is written in the table.

2) Write the anion with \qquad (unless it is polyatomic.)

Charge Balancing (to find the charge of a \qquad metal ion)

1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
2) Rule: The total number of \qquad charges in an ionic compound must equal the total number of
\qquad charges. Determine the charge on the metal ion.
3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

Examples:	
NaCl	$\mathrm{Mg}(\mathrm{OH})_{2}$
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	

Writing Formulas of Ionic Compounds

	Version 1 1. Write down each ion with its charge. 2. Add more of the ions to balance the charges: the total number of positive and negative charges must be equal. 3. Write your formula with subscripts.	Version 2 1. Write down each ion with its charge. 2. Write the chemical formula by writing the cation first and the anion second. Then, "crisscross" the charges to become the subscripts. 3. Reduce the subscripts if both divisible by the same number.
calcium phosphide		
chromium(II) hydroxide		

Prefixes Reference (no need to memorize)			
Arabic Numeral	Prefix	Arabic Numeral	Prefix
1		6	
2		7	
3		8	
4		9	
5		10	

Covalent Compounds with Special Names (memorize):
$\mathrm{NH}_{3}=$ ammonia
$\mathrm{H}_{2} \mathrm{O}=$ water
$\mathrm{CH}_{4}=$ methane

Naming Covalent Compounds

1. Write the first element.
2. Write the second element with \qquad .
3. Add prefixes to show how many of each element there is.

- Do not add "_" to first element.
- If adding "mono-" to "-oxide", write "_ "_ instead.

Examples:
$\mathrm{O}_{2} \mathrm{~F}_{2}$

Practice:

$\mathrm{S}_{2} \mathrm{O}_{5} \quad \mathrm{NO}$

PF_{3}
$\mathrm{~N}_{2} \mathrm{O}$

$\mathrm{Cl}_{3} \mathrm{O}_{7}$	CCl_{4}
CBr_{2}	$\mathrm{P}_{2} \mathrm{~S}_{6}$

Chemical Formulas of Binary Covalent Compounds

1. Identify the elements involved. Write their \qquad _.
2. Use the \qquad to determine the number of each element in the compound. Write as
\qquad .

Examples:
tetraphosphorus pentaoxide
nitrogen triiodide
selenium difluoride

Practice:	
nitrogen trioxide	tricarbon disulfide
triphosphorus tetraoxide	boron trifluoride
iodine pentafluoride	xenon hexafluoride

Section 4: Balancing Chemical Equations

Chemical Equation Vocabulary
Reactants: what \qquad the reaction; on the \qquad side of the reaction arrow
Products: what \qquad the reaction; on the \qquad side of the reaction arrow

$\mathbf{Z n}+\mathbf{2 H C l} \rightarrow \mathrm{ZnCl}_{\mathbf{2}} \mathbf{+} \mathbf{H}_{\mathbf{2}}$

	Definition and Example	Example Word Equation
uses_t_ to describe reactants and products	zinc +hydrogen chloride \rightarrow zinc chloride + hydrogen	
Skeleton Equation	uses to describe reactants and products	$\mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
Balanced Chemical Equation	uses chemical formulas to describe reactants and products in their correct _ and	$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

Why Balance?

- Chemical "recipes": how much do you put in? how much do you expect to yield?
- Law of Conservation of Mass: no atoms are ever created or destroyed
- Balancing chemical formulas involves adding \qquad in front of elements and compounds until \qquad

Tips for Balancing

- Goal: the number of atoms of each element in the reactants equals the products.
- Change coefficients only. Never add or change subscripts.
- Balance atoms in compounds first. Save elements for last.
- If the same \qquad appears in the reactants and products, you can often treat it as a \qquad instead of splitting it up.
- At the end, reduce all coefficients to lowest whole-number terms.
- Note: \qquad if there is only " \qquad " of that element or compound.

Trick for Combustion Reactions (e.g. \#10-12 below)

1. Balance every atom except oxygen.
2. Find out how many oxygen atoms you need the O_{2} to contribute. Divide that number by 2 .
This is your temporary coefficient for O_{2}.
3. You are not allowed to have fractional coefficients in your final answer. Multiply all the coefficients by 2 .
$\mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
$\ldots \mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$

Practice: Balance the following chemical reactions.

1. ___ $\mathrm{N}_{2}+\ldots \mathrm{H}_{2} \rightarrow \ldots \mathrm{NH}_{3}$
2. ___ $\mathrm{NaCl}+\ldots \mathrm{F}_{2} \rightarrow \ldots \mathrm{NaF}+\ldots \mathrm{Cl}_{2}$
3. ___ $\mathrm{Ag}_{2} \mathrm{O} \rightarrow \ldots \mathrm{Ag}_{+} \mathrm{O}_{2}$
4. ___ $\mathrm{P}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{P}_{2} \mathrm{O}_{5}$
5. ___ $\mathrm{NaBr}+\ldots \mathrm{CaF}_{2} \rightarrow \ldots \ldots \mathrm{NaF}+\ldots \mathrm{CaBr}_{2}$
6. ___ $\mathrm{FeCl}_{3}+\ldots \ldots \mathrm{NaOH} \rightarrow$ __ $\mathrm{Fe}(\mathrm{OH})_{3}+\ldots \ldots \mathrm{NaCl}$
7. ___ $\mathrm{H}_{2} \mathrm{SO}_{4}+\ldots \mathrm{NaNO}_{2} \rightarrow \ldots \mathrm{HNO}_{2}+\ldots \mathrm{Na}_{2} \mathrm{SO}_{4}$
8. ___ $\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\ldots \mathrm{O}_{2}$
9. __ $\mathrm{HCl}+\ldots \ldots \mathrm{CaCO}_{3} \rightarrow \ldots \mathrm{CaCl}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{CO}_{2}$
10.__ $\mathrm{C}_{3} \mathrm{H}_{8}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
11.___ $\mathrm{C}_{6} \mathrm{H}_{14}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
12.__ $\mathrm{C}_{8} \mathrm{H}_{18}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
