Name:				Date:		Block: _		
	TION 1: l							
Atom:	· ·							
				ed particle in the	O	f an atom	; has a ma	ss of
N	eutron:		par	ticle in the				
				mass of	(-)) Fi
				narged particle in		5		
				urrounding the nucleus of				Proton
								Neutron
un	ie atom; very		_ (mass of _).	\			
		Protons (p)		Neutrons (n)	Electr	rons (e)		
Aton	n (neutral)	1100015 (p)		Troub ons (ii)		0115 (0)		
Ion (charged)							
Ion: aı	n atom or mo	olecule with an			; formed by	,		
				Examples:				
		tells you which i		-				
				ion (e.g.): forms	whon aloc	etrone ero	
			_	-				
A	nion:		_ charged i	on (e.g); forms v	vhen elect	trons are _	
(H	Example: sul	fur atom can)
Titaniı	um is a		metal be	cause:				·
A poly	vatomic ion	is a	of cova	alently bonded atoms with a	charge. E.g.	NH_4^+ is t	he ammor	nium ion.
						,	1	т.
Practic			1 0			protons	neutrons	electrons
				protons and electrons? number from atomic	N			
		ulate the number			Br -			
				mber of protons and				
		t different numbe			Zn^{2+}			
				r of protons as electrons?	Li			
	10 form an a Why?	imon, does an ato	m nave to g	gain or lose electrons?				
	•	ium atom become	es an ion, do	bes it have to gain or lose	argon			
	electrons? H				calcium			
			an anion? D	Ooes it form by gaining or	ion			
	losing electro Is Cr ³⁺ a cati				nickel(III)			
			aining or lo	sing electrons? How	ion potassium		-	-
		do you know?			potassiuili			
10)	Why do we	call manganese a	multivalent	element? List 3 other	•	•	•	

multivalent elements.

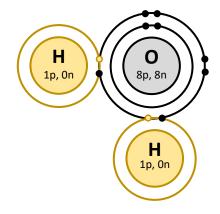
SECTION 2: MODELLING ATOMS AND COMPOUNDS

Valence Shells and Compound Formation

• The valer							·
Electrons	in this shell a	re called			·		
A stable a	tom has a ful	l valence she	ell.			ø	
• Atoms rea	act to form		(gro	oups of atoms bon	ded together	r) to	
become st	able by havir	ng a					
• Ic	nic compoun	d: formed w	hen atoms		electrons.		
• C	ovalent comp	ound: forme	ed when atoms		electro	ons.	
 Valence e 	lectrons can e	explain react	ivity.				
• T	he		an aton	n is to a full valer	nce shell, the	e more	it is.
• N	oble gases alı	ready have a			; they do not	t react with of	her elements.
 Na TiCl₃ CH₄ Cu Fe³⁺ H₂O 		12.	Fe O ²⁻ I ₂ Ni(OH) ₃	14. I	HSO ₄ - Cu ⁺ VS ₂		19. MgO ₂ 20. Pt ⁴⁺ 21. Be 22. ClO ₂ 23. CCl ₄ 24. Cl ₂
Bohr Models	of Atoms an	n n	e		р	n	e
Na atom	P	11		O atom	P	11	<u> </u>
Na ⁺ ion				O ²⁻ ion			
Mg atom				Cl atom			
Mg ²⁺ ion				Cl ⁻ ion			
2. In the •	the electrons Max electr	in energy sh	from inside to	outside:	o, going <i>cloc</i>	ckwise, singly	at first then paired

_____ from periodic table

Example: sodium atom	Example: oxygen ion
 Electrons are negatively 	eview) a full valence shell, just like the noble gases have. harged. When electrons are added, atoms become negatively charged anions. When atoms become positively charged cations.
	nen and ions are formed. Usually
	and a
shells.) e.g. NaCl: NaCl: Practice: Draw the Bohr model.	e.g. Li_2O : $\begin{array}{c} \text{Li}_{3p,4n} \\ \text{O}_{8p,8n} \end{array}$ of the following ionic compounds.
a) MgCl ₂	b) Li ₃ N


Covalent Compound Formation

- Covalent compounds form when two (or more) ______
- Lone pair: pair of ______

that is ______ between atoms

Bonding pair: ______ in a covalent compound

0 8p, 8n 0 8p, 8n

Bohr Models of Covalent Compounds

- 1. Determine how many of each atom is in the compound, from the subscripts.
- 2. Draw the Bohr models of the atoms. 'Guess and check' what covalent bonds between valence electrons will cause all atoms to have a full valence shell.
- 3. Redraw the Bohr model, showing the covalent bonds.

Practice: Draw the Bohr model of the following covalent compounds.

1 reserved 2 restricted and medical of the foliation to	omp outlies.
a) CH ₄	b) N ₂

Introducing Lewis Structures

Bohr Model	Lewis Structure
 All electrons All energy shells Shows protons and neutrons Shows a lot of information, but is clunky and time-consuming 	 Only

SE

<u>Ioni</u>

ic vs Covalent Co		_
• Tome compo	ands form when electrons are	METALS NON-METAL OF THE PROPERTY OF THE PRO
	and ions are formed. Usually invo	volves a Meta
	and a	
Covalent com	npounds form when two (or more)	
	atoms	To To To To To To To To
_		St 3= 03 2+ 00 3+ 01 3- 02 3+ 01 3- 02 3+ 01 3- 02 3- 03 3- 02 3- 03 3-
electrons.		The state of the s
	elp you identify elements, ionic compounds, o	and covalent compounds based on its formu
	elp you identify elements, ionic compounds, o	and covalent compounds based on its formu
	elp you identify elements, ionic compounds, o	and covalent compounds based on its formu

Practice: Identify the following as elements (E), ionic compounds (IC), or covalent compounds (CC).

Chemical	What is it?	Chemical	What is it?	Chemical	What is it?
PF ₃		NO ₂		NaOH	
CaCl ₂		Br_2		CCl ₄	
Cl ₂		Mg		MgBr ₂	

Naming Elements		
An element is a pure substance containing Examples:		
• Mg ()	•(hydrogen)	
• (calcium)	• Cl ₂ ()
Names of elements are found on the	Ignore subscript	s when naming.
<u>Diatomic Elements:</u> When in their elemental form, exist their valence shells.	st as diatomic molecules: two atoms b	oonding covalently to fill
List:	Memory Aid:	

Reference

Non-metal	"-ide" Ending	Non-metal	"-ide" Ending	Non-metal	"-ide" Ending
N, nitrogen		Cl, chlorine		As, arsenic *	
O, oxygen		Se , selenium		Te, tellurium *	
F , fluorine		Br , bromine		At, astatine *	
P , phosphorus		I, iodine			
S, sulfur		H, hydrogen		-	

Naming Ions

	What is it?	Naming	Examples	
			Ion Name	Ion Symbol
Monovalent Ion	Can only make one ion (see periodic table)	Cations: write name of element	sodium yttrium	Na ⁺ Y ³⁺
		Anions: write name of element with "-ide" ending	bromide oxide	Br - O ²⁻
Multivalent Metal Ion	Can make multiple ions (see periodic table)	Must specify charge with Roman numerals	manganese(III) manganese(IV) copper(I) vanadium(V)	Mn ³⁺ Mn ⁴⁺ Cu ⁺ V ⁵⁺
Polyatomic Ion	Group of non-metal atoms covalently bonded with an ionic charge	Spelling counts!!!! (Copy from table)	ammonium phosphate phosphite	NH ₄ ⁺ PO ₄ ³⁻ PO ₃ ³⁻

Practice: Complete the table with the names and chemical formulas (including charges) of the following ions. Identify as non-metal (NM), monovalent metal (M), multivalent metal (MM), or polyatomic (P).

Ion Formula	Ion Name	Туре	
Mn ⁴⁺			
K ⁺			
CO3 ²⁻			
HSO ₄ -			
Se ²⁻			
NO ₃ -			
Br ⁻			
OH.			
Ti ³⁺			
NH ₄ ⁺			
Mg^{2+}			
	hypochlorite		
	sulfide		
	iodide		
	perchlorate		
	nickel(II)		
	chromium(III)		
	hydride		
	hydroxide		
	cyanide		
	gold(I)		

Naming Ionic Compounds 1) Write the , first. For monovalent ions, do not write the ion charge. For multivalent metals, determine the ion charge through _____ Then, put the ion charge in ______ , in brackets. If the cation is polyatomic, write it exactly the way it is written in the table. 2) Write the anion with ______ (unless it is polyatomic.) Charge Balancing (to find the charge of a ______ metal ion) 1) Write out all the ions you have. Leave the charge blank on the multivalent metal. 2) Rule: The total number of _____ charges in an ionic compound must equal the total number of charges. Determine the charge on the metal ion. 3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals. Examples: NaC1 $Mg(OH)_2$ Cr_2O_3 $Ti_2(CrO_4)_3$ **Writing Formulas of Ionic Compounds** Version 1 Version 2 1. Write down each ion with its charge. 1. Write down each ion with its charge. 2. Add more of the ions to balance the 2. Write the chemical formula by writing the charges: the total number of positive cation first and the anion second. Then, "crisscross" the charges to become the subscripts. and negative charges must be equal. 3. Write your formula with subscripts. 3. Reduce the subscripts if both divisible by the same number. calcium phosphide

chromium(II) hydroxide

Naming Covalent Compounds

- 1. Write the first element.
- 2. Write the second element with "-ide" ending.

Covalent Compounds with Special Names (memorize):

- 3. Add **prefixes** to show how many of each element there is.
 - o Do not add "mono-" to first element.
 - o If adding "mono-" to "-oxide", write "monoxide" instead.

Prefixes Reference

 NH_3 = ammonia H_2O = water CH_4 = methane

Arabic numeral	Prefix	Arabic numeral	Prefix
1		6	
2		7	
3		8	
4		9	
5		10	

Examples: O_2F_2	
PF ₃	
N ₂ O	

Chemical Formulas of Binary Covalent Compounds

- 1. Identify the elements involved. Write their symbols.
- 2. Use the prefixes to determine the number of each element in the compound. Write as subscripts.

Examples:
tetraphosphorus pentaoxide
nitrogen triiodide
xenon hexafluoride

SECTION 4: BALANCING CHEMICAL EQUATIONS

Chemical Equation Vocabulary

Reactants: what	the reaction; on the	side of the reaction arrow
Products: what	the reaction; on the	side of the reaction arrow

Zn + 2HCl → ZnCl₂ + H₂

	Definition and Example	Example
Word Equation	uses to describe reactants and products	zinc + hydrogen chloride → zinc chloride + hydrogen
Skeleton Equation	to describe reactants and products	$Zn + HCl \rightarrow ZnCl_2 + H_2$
Balanced Chemical Equation	uses and chemical formulas to describe reactants and products in their correct	$Zn + 2HCl \rightarrow ZnCl_2 + H_2$

- Chemical "recipes": how much do you put in? how much do you expect to yield?
- Law of Conservation of Mass: no atoms are ever created or destroyed
- Balancing chemical formulas involves adding _______ in front of elements and compounds until _______

Tips for Balancing

- Goal: the number of atoms of each element in the reactants equals the products.
- Change coefficients only. Never add or change subscripts.
- Balance atoms in compounds first. Save elements for last.
- If the same _____ appears in the reactants *and* products, you can often treat it as a _____ instead of splitting it up.
- At the end, reduce all coefficients to lowest whole-number terms.
- Note: ______ if there is only "____" of that element or compound.

Trick for Combustion Reactions (e.g. #10-12 below)

Thek for Combustion Reactions (e.g. #10-12 below)		
Balance every atom except oxygen.	$__C_6H_{14} + __O_2 \rightarrow __CO_2 + __H_2O$	
2. Find out how many oxygen atoms you need theO ₂ to contribute. Divide that number by 2. This is your <i>temporary</i> coefficient for O ₂ .	$C_6H_{14} + C_0 \rightarrow CO_2 + H_2O$	
3. You are not allowed to have fractional coefficients in your final answer. Multiply all the coefficients by 2.	$C_6H_{14} + C_0 \rightarrow CO_2 + H_2O$	

Practice: Balance the following chemical reactions.

- 1. ___ $N_2 +$ __ $H_2 \rightarrow$ __ NH_3
- 2. ___ NaCl + ___ $F_2 \rightarrow$ ___ NaF + ___ Cl₂
- 3. $__Ag_2O \rightarrow __Ag + __O_2$
- 4. $P + O_2 \rightarrow P_2O_5$
- 5. ___ NaBr + ___ CaF₂ \rightarrow ___ NaF + ___ CaBr₂
- 6. ___ FeCl₃ + ___ NaOH \rightarrow ___ Fe(OH)₃ + ___ NaCl
- 7. ___ $H_2SO_4 +$ ___ $NaNO_2 \rightarrow$ ___ $HNO_2 +$ ___ Na_2SO_4
- 8. $\underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_2O \rightarrow \underline{\hspace{1cm}} C_6H_{12}O_6 + \underline{\hspace{1cm}} O_2$
- 9. ___ HCl +__ $CaCO_3 \rightarrow$ __ $CaCl_2 +$ __ $H_2O +$ __ CO_2
- 10. ___ $C_3H_8 +$ ___ $O_2 \rightarrow$ __ $CO_2 +$ ___ H_2O
- 11.___ $C_6H_{14} +$ ___ $O_2 \rightarrow$ ___ $CO_2 +$ ___ H_2O
- 12.___ $C_8H_{18} +$ __ $O_2 \rightarrow$ __ $CO_2 +$ __ H_2O