Name:		Date:		Block: _		
SECTION 1: REVIEW						
A 4 ame						
		charged particle in the	0	f an atom	· has a may	ss of
			0	1 an atom	, nas a ma	
			\int	\backslash		
		m; has a mass of	G	\uparrow	\sim ϵ	Electron
		charged particle in		$\frac{1}{2}$	/ (+	- Proton
		surrounding the nucleus of	f ((+)		Neutron
the atom; very	· (r	mass of).	\neg			
	Protons (p)	Neutrons (n)	Elect	rons (e)		
Atom (neutral)						
Ion (charged)						
Ion: an atom or mo	lecule with an		; formed by	/		
		Examples:				
The Periodic Table	tells you which ion((s) an atom can form.				
Cation:	(charged ion (e.g); forms	when elec	ctrons are _	
(Example: ma	gnesium atom can					
Anion:	c	harged ion (e.g); forms v	when elect	trons are _	
-						
		_ of covalently bonded atoms with	hacharge Fo	NH₄ ⁺ is t	he ammor	nium ion
A polyatomic ion	is a	_ or covarentry bonded atoms with	ii a charge. L.g.	. 19114 15 (inum ion.
Practice:				protons	neutrons	electrons
		mber of protons and electrons?	Ν			
	•	t atomic number from atomic	Dut			
	ulate the number of r	same number of protons and	Br -			
•	t different numbers o	-	Zn^{2+}			
		e number of protons as electrons?	T '			
	nion, does an atom h	have to gain or lose electrons?	Li			
Why? 6) When a calci	ium atom becomes a	n ion, does it have to gain or lose	argon			
electrons? H		,	calcium			
		anion? Does it form by gaining or	ion			
losing electrons $P_{\rm a}$			nickel(III)			
 8) Is Cr³⁺ a cati 9) Does arsenic 		ing or losing electrons? How	ion			
	do you know?		potassium			
10) Why do we d	call manganese a mu	ltivalent element? List 3 other	L	1	1	I
multivalent e	elements.					

SECTION 2: MODELLING ATOMS AND COMPOUNDS

Valence Shells and Compound Formation

•	The valence shell is the	·
	Electrons in this shell are called	
•	A stable atom has a full valence shell.	
•	Atoms react to form (groups of atoms bonded together) to	
	become stable by having a	
	Ionic compound: formed when atomselectrons.	
	Covalent compound: formed when atoms electrons.	
•	Valence electrons can explain reactivity.	
	• The an atom is to a full valence shell, the more	it is.

• Noble gases already have a _____; they do not react with other elements.

Practice: Identify the following as atoms (pure elements), ions, or compounds. BONUS: identify any cations, anions, and polyatomic ions.

1. Na	7. H ₂	13. Ca(OH) ₂	19. MgO ₂
2. $TiCl_3$	8. Fe	14. Mn	20. Pt ⁴⁺
3. CH ₄	9. O ²⁻	15. HSO4 ⁻	21. Be
4. Cu	10. I ₂	16. Cu ⁺	22. ClO_2^{-}
5. Fe^{3+}	11. Ni(OH) ₃	17. VS ₂	23. CCl ₄
6. H ₂ O	12. Mg	18. NO	24. Cl ₂

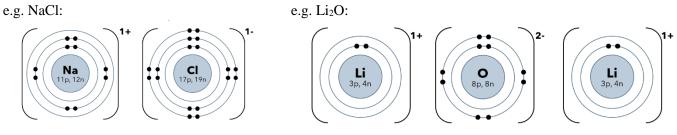
Bohr Models of Atoms and Ions

	р	n	e		р	n	e
Na atom				O atom			
Na ⁺ ion				O ²⁻ ion			
Mg atom				Cl atom			
Mg ²⁺ ion				Cl ⁻ ion			

1. Calculate the number of protons, neutrons, electrons.

2. In the nucleus:

- 3. Draw the electrons in energy shells:
 - Max electrons per shell from inside to outside: ____
 - (Except in first shell), electrons are filled *starting at top*, going *clockwise*, singly at first then paired
- 4. Ions only:
 - Add ______ and _____ from periodic table


Example: sodium atom	Example: oxygen ion	

Ionic Compound Formation (Review)

- Atoms form ions to have a **full valence shell**, just like the noble gases have.
- Electrons are negatively charged. When electrons are added, atoms become negatively charged anions. When electrons are taken away, atoms become positively charged cations.
- Ionic compounds form when ______ and ions are formed. Usually involves a ______.

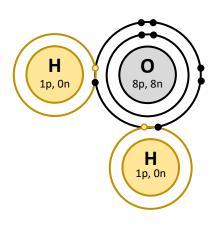
Bohr Models of Ionic Compounds

- 1. Determine how many of each ion is in the compound, from the subscripts.
- 2. Use the periodic table to find the ionic charge of each ion.
- 3. Draw the Bohr models of all the ions in the compound, side by side. (They should all have full valence shells.)

Practice: Draw the Bohr models of the following ionic compounds.

a) MgCl ₂	b) Li ₃ N

Covalent Compound Formation


- Covalent compounds form when two (or more) ______
- Lone pair: pair of _____

that is ______ between atoms

Bonding pair: ______

0 8p, 8n 6p, 6n 8p, 8n

_____ in a covalent compound

Bohr Models of Covalent Compounds

- 1. Determine how many of each atom is in the compound, from the subscripts.
- 2. Draw the Bohr models of the atoms. 'Guess and check' what covalent bonds between valence electrons will cause all atoms to have a full valence shell.
- 3. Redraw the Bohr model, showing the covalent bonds.

Practice: Draw the Bohr model of the following covalent compounds.

a) CH ₄	b) N ₂

Introducing Lewis Structures

Bohr Model	Lewis Structure
 All electrons All energy shells Shows protons and neutrons Shows a lot of information, but is clunky and time-consuming 	 Only

Lewis Structures of Atoms

- 1. Write element symbol (capitalization matters!)
- 2. Draw valence electrons around, using the same positions as the Bohr model (i.e. clockwise, unpaired at first then paired)

Practice: Draw the Lewis structures of:

a) Mg atom	b) N atom	c) H atom	d) F atom

Lewis Structures of Ions and Ionic Compounds

Cation:

- Element symbol
- No electrons

Anion:

- Element symbol
- Full valence shell

• Square brackets and charge

Square brackets and charge

Practice: Draw the Lewis structures for the following ionic compounds:

a) NaCl	b) MgCl ₂	d) AlF ₃

Lewis Structures of Covalent Compounds

Rule 1: All

Rule 2: All atoms must have a _____

1	Draw the Lewis structure of ea	ch atom	Symbols Used in Lewis Structures		
 Determine how many bonds each atom "needs" to complete its valence shell. Guess and check with single, double, and triple 			Lone pair		:
			Single bond (1 bonding pair; 2 electrons)		
			Double bond (2 bonding pairs; 4 electrons)		=
bonds until your structure satisfies Rules 1 and 2.		Triple bond (3 bonding pairs; 6 electrons)		≡	
Example: H ₂ O		Example: NH ₃		Example: CO ₂	

Practice: Try drawing the Lewis structures of the following covalent compounds.

, 6	5 5 5	1
HF	PF ₃	CH ₂ O
N ₂ *	CH ₄	CO ₂ H ₄ (<i>challenge</i>)

SECTION 3: IUPAC NOMENCLATURE

Ionic vs Covalent Compounds

Draw a diagram to help you identify elements, ionic compounds, and covalent compounds based on its formula.

Practice: Identify the following as elements (E), ionic compounds (IC), or covalent compounds (CC).

Chemical	What is it?	Chemical	What is it?	Chemical	What is it?
PF ₃		NO ₂		NaOH	
CaCl ₂		Br ₂		CCl ₄	
Cl ₂		Mg		MgBr ₂	

Naming Elements

An element is a pure substance containing ______. Examples:

- Mg (_____) ____(hydrogen)
- ____ (calcium)

Cl₂ (_____)

Names of elements are found on the ______. Ignore subscripts when naming.

<u>Diatomic Elements:</u> When in their elemental form, exist as diatomic molecules: two atoms bonding covalently to fill their valence shells.

List: _____ Memory Aid: _____

Reference

Non-metal	"-ide" Ending	Non-metal	"-ide" Ending	Non-metal	"-ide" Ending
N, nitrogen		Cl, chlorine		As, arsenic *	
O, oxygen		Se, selenium		Te , tellurium *	
F , fluorine		Br , bromine		At, astatine *	
P , phosphorus		I, iodine			
S , sulfur		H, hydrogen			

Naming Ions

	What is it?	Naming	Examples	
			Ion Name	Ion Symbol
Monovalent Ion	Can only make one ion (see periodic table)	Cations: write name of element	sodium yttrium	Na ⁺ Y ³⁺
		Anions: write name of element with "-ide" ending	bromide oxide	Br - O ²⁻
Multivalent Metal Ion	Can make multiple ions (see periodic table)	Must specify charge with Roman numerals	manganese(III) manganese(IV) copper(I) vanadium(V)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Polyatomic Ion	Group of non-metal atoms covalently bonded with an ionic charge	Spelling counts!!!! (Copy from table)	ammonium phosphate phosphite	NH4 ⁺ PO4 ³⁻ PO3 ³⁻

Practice: Complete the table with the names and chemical formulas (including charges) of the following ions. Identify as non-metal (NM), monovalent metal (M), multivalent metal (MM), or polyatomic (P).

Ion Formula	Ion Name	Туре
Mn ⁴⁺		
K ⁺		
CO3 ²⁻		
HSO4 ⁻		
Se ²⁻		
NO ₃ -		
Br ⁻		
OH-		
Ti ³⁺		
NH 4 ⁺		
Mg^{2+}		
	hypochlorite	
	sulfide	
	iodide	
	perchlorate	
	nickel(II)	
	chromium(III)	
	hydride	
	hydroxide	
	cyanide	
	gold(I)	

Naming Ionic Compounds

- 1) Write the _____, first.
 - For monovalent ions, do not write the ion charge.
 - For multivalent metals, determine the ion charge through ______

Then, put the ion charge in ______, in brackets.

- If the cation is polyatomic, write it exactly the way it is written in the table.
- 2) Write the anion with ______ (unless it is polyatomic.)

Charge Balancing (to find the charge of a _____ metal ion)

- 1) Write out all the ions you have. Leave the charge blank on the multivalent metal.
- 2) Rule: The total number of ______ charges in an ionic compound must equal the total number of

_____ *charges.* Determine the charge on the metal ion.

3) Write the compound name. Specify the ion charge on the multivalent metal using brackets and Roman numerals.

Examples:		
NaCl	Mg(OH) ₂	
Cr ₂ O ₃	Ti ₂ (CrO ₄) ₃	

Writing Formulas of Ionic Compounds

	 Version 1 Write down each ion with its charge. Add more of the ions to balance the charges: the total number of positive and negative charges must be equal. Write your formula with subscripts. 	 Version 2 Write down each ion with its charge. Write the chemical formula by writing the cation first and the anion second. Then, "criss-cross" the charges to become the subscripts. Reduce the subscripts if both divisible by the same number.
calcium phosphide		
chromium(II) hydroxide		

Naming Covalent Compounds

- 1. Write the first element.
- 2. Write the second element with "-ide" ending.
- 3. Add **prefixes** to show how many of each element there is.
 - Do not add "mono-" to first element.
 - If adding "mono-" to "-oxide", write "monoxide" instead.

Prefixes Reference

Arabic numeral	Prefix	Arabic numeral	Prefix
1		6	
2		7	
3		8	
4		9	
5		10	

Covalent Compounds with Special Names (memorize):

 $NH_3 = ammonia$

 $H_2O = water$

 $CH_4 = methane$

Examples:	
O ₂ F ₂	
PF ₃	
N ₂ O	

Chemical Formulas of Binary Covalent Compounds

- 1. Identify the elements involved. Write their symbols.
- 2. Use the prefixes to determine the number of each element in the compound. Write as subscripts.

Examples:	
tetraphosphorus pentaoxide	
nitrogen triiodide	
xenon hexafluoride	

SECTION 4: BALANCING CHEMICAL EQUATIONS

Chemical Equation Vocabulary

Reactants: what	the reaction; on the	side of the reaction arrow
Products: what	the reaction; on the	_ side of the reaction arrow

$Zn + 2HCl \rightarrow ZnCl_2 + H_2$

	Definition and Example	Example
Word Equation	uses to describe reactants and products	zinc + hydrogen chloride → zinc chloride + hydrogen
Skeleton Equation	usesto describe reactants and products	$Zn + HCl \rightarrow ZnCl_2 + H_2$
Balanced Chemical Equation	uses and chemical formulas to describe reactants and products in their correct	$Zn + 2HCl \rightarrow ZnCl_2 + H_2$

Why Balance?

- Chemical "recipes": how much do you put in? how much do you expect to yield?
- Law of Conservation of Mass: no atoms are ever created or destroyed
- Balancing chemical formulas involves adding ______ in front of elements and compounds until _______

Tips for Balancing

- Goal: the number of atoms of each element in the reactants equals the products.
- Change coefficients only. <u>Never</u> add or change subscripts.
- Balance atoms in compounds first. Save elements for last.
- If the same ______ appears in the reactants *and* products, you can often treat it as a ______ instead of splitting it up.
- At the end, reduce all coefficients to lowest whole-number terms.
- Note: ______ if there is only "____" of that element or compound.

Trick for Combustion Reactions (e.g. #10-12 below)

1. Balance every atom except oxygen.	$\underline{} C_6H_{14} + \underline{} O_2 \rightarrow \underline{} CO_2 + \underline{} H_2O$
 Find out how many oxygen atoms you need theO₂ to contribute. Divide that number by 2. This is your <i>temporary</i> coefficient for O₂. 	$\underline{} C_6H_{14} + \underline{} O_2 \rightarrow \underline{} CO_2 + \underline{} H_2O$
 You are not allowed to have fractional coefficients in your final answer. Multiply all the coefficients by 2. 	$\underline{}C_{6}H_{14} + \underline{}O_{2} \rightarrow \underline{}CO_{2} + \underline{}H_{2}O$

Practice: Balance the following chemical reactions.

1. $N_2 + H_2 \rightarrow NH_3$
2. $\underline{\qquad} NaCl + \underline{\qquad} F_2 \rightarrow \underline{\qquad} NaF + \underline{\qquad} Cl_2$
3. $Ag_2O \rightarrow Ag + O_2$
4. $P + O_2 \rightarrow P_2O_5$
5NaBr +CaF ₂ \rightarrow NaF +CaBr ₂
6 FeCl ₃ + NaOH \rightarrow Fe(OH) ₃ + NaCl
7. $H_2SO_4 + NaNO_2 \rightarrow HNO_2 + Na_2SO_4$
8. $CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$
9. <u>HCl</u> + <u>CaCO₃</u> \rightarrow <u>CaCl₂</u> + <u>H₂O</u> + <u>CO₂</u>
$10. \underline{} C_3H_8 + \underline{} O_2 \rightarrow \underline{} CO_2 + \underline{} H_2O$
$11.\C_6H_{14} + \O_2 \rightarrow \CO_2 + \H_2O$
$12. \underline{} C_8H_{18} + \underline{} O_2 \rightarrow \underline{} CO_2 + \underline{} H_2O$
10