PART C: PERIODIC TABLE TRENDS

In chemistry the term refers to a regular pattern in the properties of elements based on their atomic structure.
This is the pattern that Mendeleev predicted. When the pattern repeated, he began a new period.
The periodic table is a powerful tool for analyzing trends in atomic size and reactivity
ATOMIC SIZE TRENDS:
Observe the sizes of the atoms in each group and period shown in the diagram below. Do you see a pattern?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 He 1 53 31 2 Li Be
167 112 Nonmetals 87 67 56 48 42 38 3 Na Mg
190 145 4 K Co Sc Ti V Cr Min Fe Co Ni Cu Zn Ga Ge As Se Br Kr 243 194 184 176 171 166 161 156 152 149 145 142 136 125 114 103 94 88
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn
1. Atomic size no creased moving DOWN a group/column.
• as you move down a goop, elements have atoms with energy
• the <u>greater</u> the number of electron shells, the <u>farther</u> away from the nucleus the valence electrons are
• if the electrons are farther away, the atom is larger.
2. Atomic size decreased moving LEFT to RIGHT across a period/row. • elements have greated numbers of electrons in their Valence
shells as you move LEFT to RIGHT.
 as the number of electrons increases, so does the number of protons in the nucleus. the attraction between the negative valence electrons and the positive nucleus is very strong.
• with each electron added, the outer shell is pulled <u>close</u> to the nucleus and the
atomic size decrease

REACTIVITY TRENDS:

Compare what happens when **potassium** (A) and **sodium** (B) are added to water:

You can see that the reaction is <u>wo</u> vigorous and violent in 'A', water + potassium.

Why is this the case?

What is **similar** about potassium and sodium? <u>alkali metals</u>, 1 valence electron.

What is **different** about potassium and sodium? <u>potassium has an extra electron shell</u>

- Because potassiums valence electrons are farther away from the nucleus than the electrons in a <u>sodium</u> atom, the attraction to the nucleus is <u>lower</u>
- Electrons further from the nucleus require _____ energy (are easier) to remove.
- The adding and removing of electrons is what is involved in chemical reactions
- This is why we would say that potassium is more reactive than sodium.

This pattern repeats throughout the periodic table with the *exception of the noble gases*.

• the noble gases have a FULL valence shell, they are stable and <u>nect</u>

(non-reactive)

PRACTICE

- 1. Explain why atoms get larger down a group on the periodic table:
- 2. Explain why atoms get smaller from LEFT to RIGHT across a periodic table:
- 3. Why is an alkali metal MORE reactive than an alkaline-earth metal in the same period?