Dihybrid Cross Supplemental Questions

- 1) Aliens can either be dominant green (G) or blue (g). Aliens also exhibit codominance in the decorations on their heads: H^A will have curly antennae on their heads, while H^F will have flowers on their heads.
 - a. Draw an H^AH^A alien, an H^FH^F alien, and an H^FH^A alien.
 - b. Use a Punnett square to determine the genotypic and phenotypic ratios of a cross between a heterozygous green female with curly antennae and a blue male that is heterozygous for his head decorations.
- 2) In rabbits, black fur colour (F^B) and white fur colour (F^W) are incompletely dominant. Additionally, ear length is an X-linked trait, where long ears (X^{L}) are dominant over short ears (X^{L})
 - a. Use a Punnett square to determine the genotypic and phenotypic ratios of a cross between a grey short-eared female and a black long-eared male.
 - b. What percentage of the offspring will be:
 - i. Black coloured?
 - ii. Grey coloured?
 - iii. Males with long ears?
 - iv. Females with long ears?
- 3) In four-o-clock flowers, flower colour can be either red, white, or red with white spots. Seed shape is a Mendelian trait where smooth seeds are dominant over wrinkled.
 - a. What type of trait is flower colour: codominant, incomplete dominant, Mendelian, or sex-linked? How do you know?
 - b. A pink-flowered plant that is heterozygous for seed shape is crossed with a whiteflowered plant that is heterozygous for seed shape. Use a Punnett square to determine the genotypic and phenotypic ratios of offspring resulting from this dihybrid cross.
 - c. A "Minnie Mouse" plant is one that has flowers that are red with white spots, and smooth seeds. These plants are very valuable. What would you advise a farmer who is trying to produce the maximum number of Minnie Mouse plants?

- 4) Aliens can either be dominant green (G) or blue (g). Aliens also exhibit codominance in the decorations on their heads: H^A will have curly antennae on their heads, while H^F will have flowers on their heads.
 - a. Draw an H^AH^A alien, an H^FH^F alien, and an H^FH^A alien.

H^AH^A should have antennae; H^FH^F should have flowers; H^FH^A should have both flowers and antennae.

b. Use a Punnett square to determine the genotypic and phenotypic ratios of a cross between a heterozygous green female with curly antennae and a blue male that is heterozygous for his head decorations.

GgH^AH^A x ggH^AH^F

	GH ^A	GH ^A	gH ^A	gH ^A
gH ^A	GgH ^A H ^A			
gH ^₄	GgH ^A H ^A			
gH [₽]	GgH ^A H ^F			
gH ^F	GgH ^A H ^F			

^Note: colours are used to distinguish between 'blocks' with the same genotype.

Genotypic ratios: 1GgH^AH^A:1ggH^AH^A:1GgH^AH^F: 1ggH^AH^F

Phenotypic ratios: 1 green with antennae: 1 green with antennae and flowers: 1 blue with antennae: 1 blue with antennae and flowers

- 5) In rabbits, black fur colour (F^B) and white fur colour (F^W) are incompletely dominant. Additionally, ear length is an X-linked trait, where long ears (X^{L}) are dominant over short ears (X^{L})
 - a. Use a Punnett square to determine the genotypic and phenotypic ratios of a cross between a grey short-eared female and a black long-eared male.

Grey short-eared female: F^BF^WX^IX^I

Black long-eared male: F^BF^BX^LY

	F^BX^L	F^BX^L	F ^B Y	F ^B Y
F^BX^I	F ^B F ^B X ^L X ^I	F ^B F ^B X ^L X ^I	F ^B F ^B X ^I Y	F ^B F ^B X ^I Y
F^BX^I	F ^B F ^B X ^L X ^I	F ^B F ^B X ^L X ^I	F ^B F ^B X ^I Y	F ^B F ^B X ^I Y
F^wX^I	F ^W F ^B X ^L X ^I	F ^W F ^B X ^L X ^I	F ^W F ^B X ^I Y	F ^w F ^B X ^I Y
F^wX^I	F ^W F ^B X ^L X ^I	F ^W F ^B X ^L X ^I	F ^W F ^B X ^I Y	F ^w F ^B X ^I Y

Genotypic ratio: $1 F^{B}F^{B}X^{L}X^{I}$: $1 F^{W}F^{B}X^{L}X^{I}$: $1 F^{B}F^{B}X^{I}Y$: $1 F^{W}F^{B}X^{I}Y$

Phenotypic ratio: 1 black, long-eared female: 1 grey, long-eared female: 1 black, short-eared male: 1 grey, short-eared male

- b. What percentage of the offspring will be:
 - i. Black coloured? 50%
 - ii. Grey coloured? 50%
 - iii. Males with long ears? 0%
 - iv. Females with long ears? 50%
- 6) In four-o-clock flowers, flower colour can be either red, white, or red with white spots. Seed shape is a Mendelian trait where smooth seeds are dominant over wrinkled.
 - a. What type of trait is flower colour: codominant, incomplete dominant, Mendelian, or sex-linked? How do you know?

Codominant. One of the phenotypes (red with white spots) shows both of the other phenotypes. This is the heterozygote.

b. A pink-flowered plant that is heterozygous for seed shape is crossed with a whiteflowered plant that is heterozygous for seed shape. Use a Punnett square to determine the genotypic and phenotypic ratios of offspring resulting from this dihybrid cross.

Let flower colour alleles be C^R for red, C^W for white.

Let seed shape be represented by A (smooth) or a (wrinkled).

Cross: C^RC^WAa x C^WC^WAa

	C ^R A	С ^к а	C ^w A	C ^w a		
C ^w A	C ^R C ^W AA	C ^R C ^W Aa	C ^w C ^w AA	C ^w C ^w Aa		
	Red/white	Red/white	White smooth	White smooth		
	smooth	smooth				
Same as previous row						
C ^w a	C ^w C ^R Aa	C ^w C ^R aa	C ^w C ^w Aa	C ^w C ^w aa		
	Red/white	Red/white	White smooth	White wrinkled		
	smooth	wrinkled				
Same as previous row						

Genotypic ratio: 1 C^RC^WAA : 1 C^RC^WAa : 1 C^WC^WAA : 1 C^WC^WAa : 1 C^WC^RAa : 1 C^WC^RAa : 1 C^WC^WAa : C^WC^WAa

Phenotypic ratio: 3 red/white smooth: 1 red/white wrinkled: 3 white smooth: 1 white wrinkled

c. A "Minnie Mouse" plant is one that has flowers that are red with white spots, and smooth seeds. These plants are very valuable. What would you advise a farmer who is trying to produce the maximum number of Minnie Mouse plants?

First, through trial and error, create two groups of true-breeding plants: 1) red flowers and smooth seeds; 2) white flowers with smooth seeds. Then, cross these two lines. All offspring will be Minnie Mouse plants. However, do not let Minnie Mouse plants cross with each other...