Name: ____ Date: _

SYNTHESIS AND DECOMPOSITION

Synthesis reactions are chemical reactions in which two or more substances react to form a new product. The general form of a synthesis reaction is written as: $A + B \rightarrow AB$

Decomposition reactions are chemical reactions in which a reactant breaks down into two or more products. The general form of a decomposition reaction is written as: $AB \rightarrow A + B$

Balance the following reactions and identify whether the reactions are synthesis or decomposition reactions.

	Balance the Reactions	Synthesis or Decomposition?
1.	$H_2SO_4 \rightarrow H_2O + SO_3$	Decomposition
2.	$16Cu + S_8 \rightarrow 8Cu_2S$	Synthesis
3.	$Zn(OH)_2 \rightarrow ZnO + H_2O$	Decomposition
4.	$2H_2O_2 \rightarrow 2H_2O + O_2$	Decomposition

Identify the following reaction types and predict the products. Then, balance the equations.

	Predict and Balance the Reactions	Synthesis or Decomposition?
5.	$2Na + I_2 \rightarrow 2NaI$	Synthesis
6.	hydrogen + chlorine \rightarrow ? H ₂ + Cl ₂ \rightarrow 2HCl	Synthesis
7.	$2Ag_2O \rightarrow 4Ag + O_2$	Decomposition
8.	$2P_3O_5 \rightarrow 6P + 5O_2$	Decomposition

Block: ___

SINGLE AND DOUBLE REPLACEMENT

Single replacement reactions are chemical reactions in which a metal or non-metal element replaces the corresponding metal or non-metal in an ionic compound. The general form of a single replacement reaction is written as A + BC \rightarrow AC + B (A is a metal) or A + BC \rightarrow C + BA (A is a non-metal).

Double replacement reactions are chemical reactions in which the positive ions in two ionic compounds 'switch places' to form two new ionic compounds. The general form of a double replacement reaction is written as AB + CD \rightarrow AD + CB.

Balance the following reactions and identify whether they are single replacement or double replacement.

	Balance the Reactions	Single or Double Replacement?
9.	$2\text{KI} + \text{Br}_2 \rightarrow 2\text{KBr} + \text{I}_2$	Single
10.	$3BaCl_2 + Al_2(SO_4)_3 \rightarrow 3BaSO_4 + 2AlCl_3$	Double
11.	$2 \text{AgNO}_3 + \text{Cu} \rightarrow \text{Cu}(\text{NO}_3)_2 + 2 \text{Ag}$	Single
12.	$2\text{FeCl}_3 + 3\text{Ca(OH)}_2 \rightarrow 2\text{Fe(OH)}_3 + 3\text{CaCl}_2$	Double

Identify the following reaction types and predict the products. Then, balance the equations.

	Predict and Balance the Reactions	Single or Double Replacement?
13.	$CuCl_2 + F_2 \rightarrow CuF_2 + Cl_2$	Single
14.	$K_2CO_3 + BaCl_2 \rightarrow 2KCl + BaCO_3$	Double
15.	calcium + aluminum nitride \rightarrow ? 3Ca + 2Al(NO ₂) ₃ \rightarrow 2Al + 3Ca(NO ₂) ₂	Single
16.	ammonium chloride + lead(III) nitrate \rightarrow ? 3NH ₄ Cl + Pb(NO ₃) ₃ \rightarrow 3NH ₄ NO ₃ + PbCl ₃	Double

NEUTRALISATION (SEE "ALL ABOUT THAT BASE" NOTES)

Neutralisation is a special example of a double replacement reaction where an acid and base react to form water and a salt. The general form of a neutralisation is HA + BOH \rightarrow H₂O + BA.

Extra Practice: Identify acids, bases, and salts using green workbook pg 91. Write balanced chemical equations for each reaction below. Then, colour-code the acid (red), base (blue), and salt (green).

	Predict and Balance the Reactions
17.	$2\text{HCl} + \text{Ba}(\text{OH})_2 \rightarrow \frac{\text{BaCl}_2 + \text{H}_2\text{O}}{\text{BaCl}_2 + \text{H}_2\text{O}}$
18.	NaOH + CH ₃ COOH → NaCH ₃ COO + H ₂ O
19.	$3Ca(OH)_2 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6H_2O$
20.	$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$
21.	$2HNO_3 + Sr(OH)_2 \rightarrow Sr(NO_3)_2 + 2H_2O$
22.	hydrogen fluoride + iron(III) hydroxide \rightarrow ? 3HF + Fe(OH) ₃ \rightarrow FeF ₃ + 3H ₂ O
23.	hydrogen bromide + tin(IV) hydroxide \rightarrow ? 4HBr + Sn(OH) ₄ \rightarrow SnBr ₄ + 4H ₂ O
24.	hydrogen phosphate + barium hydroxide \rightarrow ? 2H ₃ PO ₄ + 3Ba(OH) ₂ \rightarrow Ba ₃ (PO ₄) ₂ + 6H ₂ O

COMBUSTION

Combustion is a reaction of an element or compound (often a hydrocarbon or alcohol) with oxygen to produce carbon dioxide and water. The general form of a hydrocarbon combustion reaction is $C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O$. Alcohol combustion leads to the same products (carbon dioxide and water).

Predict the products of the following combustion reactions. Then, balance the equations.

	Predict and Balance the Reactions
25.	$2C_2H_6 + 5O_2 \rightarrow 2CO_2 + 6H_2O$
26.	$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$
27.	$2C_3H_8O + 9O_2 \rightarrow 6CO_2 + 8H_2O$
28.	$2C_{12}H_{22}O_{12} + 23O_2 \rightarrow 24CO_2 + 22H_2O$

6.1 Important Vocabulary

- **Combustion**: the rapid reaction of an element or compound (usually a hydrocarbon or alcohol) with oxygen to form an oxide and to produce heat
- Decomposition: the breaking down of a compound into smaller compounds or separate elements
- **Double Replacement**: when two ionic solutions react to produce two other ionic compounds, one of which can be a precipitate
- Neutralisation: an example of a double replacement reaction where an acid and base react to form water and a salt
- Precipitate: an insoluble (does not dissolve) solid ionic compound that often forms in double replacement reactions
- Single Replacement: when a reactive element (metal or non-metal) and compound react to produce another element and another compound

Synthesis (Combination): where two or more reactants combine to produce a single product

It may help you to review:

- Ionic bonding (Ch. 4.1)
- Diatomic molecules (Ch. 4.1)
- Naming Compounds (Ch. 4.2)
- Balancing Equations (Ch. 4.3)
- Acid-Base Neutralization (Pg. 236 in textbook)